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Introduction

In the last few years cloud computing has become a popular model for offering compute
resources in the commercial sector. Infrastructure as a Service (IaaS) clouds enable users to easily
scale the compute capacity and enable them to run custom software stacks. These characteristics
have also raised interest in the field of scientific computing.

This report is a quantitative assessment of the competitiveness of commercial IaaS clouds and
CSC's computing resources, which comprise bare-metal supercomputers, clusters and cloud
resources. The comparison is done in terms of price-performance based on specifications, as well
as  actual  benchmarks  for  various  workloads.  We  show  here  that  the  large  commercial  cloud
providers  are  not,  for  the  majority  of  scientific  workloads,  competitive  in  terms  of  price  nor
application performance. For a subset of scientific workloads they work well, and hence CSC is
also actively developing a private high performance cloud offering.
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Compute capacity for scientific computing

Traditionally high-performance computing (HPC) resources comprise bare-metal
supercomputers, and clusters, where computational work (jobs) are queued and executed when
there are sufficient resources on the machine. All applications and libraries need to be compiled
for the operating system that is installed on the machine

In IaaS clouds capacity is offered using virtualization technology. On each node a hypervisor runs
multiple virtual machines (VMs, or "instances") on virtual operating platforms. On these VMs one
can install  Linux  or  Windows,  and a  complete  custom stack  of  software.  A  VM can efficiently
utilize the central processing unit (CPU) and main memory, but accessing external devices such
as disks, graphics processing units (GPUs) and network interfaces may incur significant overhead
since the hypervisor translates the accesses in software. Recently a number of hardware based
approaches have been developed to reduce overhead: Single Root I/O Virtualization (SR-IOV)
that supports access from multiple guest VMs, and PCI passthrough that supports one VM per
node.

In scientific computing even small overhead may be unacceptable, and so-called software
containers have become an option to virtualization. A container uses Linux cgroups and kernel
namespaces to enable containers to run a fully custom stack of software including system tools,
system libraries, runtimes, and code on top of the Linux host kernel. This enables packaging an
application into a container that will run on any Linux system that supports containers. The
overhead from containers is small because they run natively on top of the Linux kernel.

Commercial cloud providers

In commercial IaaS clouds the focus has been on hardware that is useful for running standard
business and web applications. These are a match also with scientific workflows where the
individual instances do not need to be tightly coupled with a high-performance interconnect.
Typically, the cloud platforms offer different flavours of nodes, optimizing for compute
performance, I/O performance, or the amount of memory. The most common interconnect is 10
GB Ethernet. The main commercial cloud providers are 1 : Amazon  web  services  (AWS)  EC2,
Microsoft Azure, IBM's Spectrum Computing, Google Cloud Platform and Fujitsu Cloud Service K5.

There are also cloud platforms and "computing as a service" providers that are focused on HPC
and performance. The typical hallmark of these is dedicated infrastructure which comprises fast
nodes and Infiniband interconnects supporting RDMA. Typically these are not traditional clouds
but rather bare-metal clusters around which ease-of-user services such as pre-installed
applications and consulting services have been developed. In this regard they are similar to
traditional supercomputing centers for science. A few companies in this category are Bull
extreme factory, Nimbix, Penguin Computing On Demand (POD) and Sabalcore.

1  https://www.srgresearch.com/articles/aws-remains-dominant-despite-microsoft-and-google-growth-
surges
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Additionally some companies provide a software product with which external clouds such as EC2
can be used more easily or more efficiently. Examples from this category are: CycleCloud and
Alces Flight.

CSC - IT Center for Science

CSC supports researchers and academic institutions by providing a comprehensive set of
computing services. CSC's computing platforms are located in Kajaani, Finland, in one of the most
energy-efficient datacenters in the world.

Sisu supercomputer is a Cray XC40 system with over 40,000 cores, supporting large-scale parallel
computation which requires exceptionally powerful supercomputing resources, from several
hundreds to up to thousands of cores. It features a collection of preinstalled applications and
development tools which support massive parallelism.

Taito cluster is aimed for general-purpose technical and scientific computing, from single-core
(sequential,  or  serial)  jobs  to  small  parallel  jobs  of  a  few  hundred  cores.  It  features  a  large
collection of preinstalled applications and development tools, special large-memory nodes for
tasks requiring a large memory footprint, and specialized compute nodes with NVidia Tesla GPUs.

cPouta and ePouta are CSC's cloud computing platforms that offer high performance computing
platforms via the IaaS model. ePouta is a secure private cloud for sensitive data, such as genomic
data.
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Specifications and pricing

Cloud pricing models

Cloud providers typically provide a pricing scheme where the price per CPU hour or node hour is
dependent  on  multiple  factors:  CPU  performance,  memory  size,   disk  performance,   are  the
resources reserved for a fixed-term, and are the resources reliable or can the instances be
terminated if other higher paying customers require more resources.  For example for AWS EC2
there are essentially three pricing models2 for compute resources

1. On-demand: No fixed costs, only pay for dedicated use of node. Most expensive option
per hour.

2. Reserved instances: Nodes are reserved for the customer, and the customer pays for the
capacity even if they are not used.

3. Spot Instances: Market driven pricing, where instances are terminated when price goes
above the bid set by the customer.

Furthermore cloud providers charge for data storage and transfer. As datasets grow and become
more complicated the role of the storage subsystem becomes increasingly important. A single
storage model is not enough for complicated data storage and analysis requirements and
therefore service providers have different solutions with different performance characteristics.
We can identify three main categories of storage that are:

1. Persistent local storage.
2. Object or database storage.
3. Cold storage that is accessed rarely.

Data transfer cost is dependent on the type of the access and also on the geographical region.
Variety of different storage solutions gives users flexibility and also an opportunity to optimize
the cost of data storage and access. On the other hand, users must have predictable needs in
order to be able to fully optimize the costs. In most cases transferring data between different
storage models or services incurs extra cost.

CSC - IT Center for Science pricing model

The pricing for CSC’s resources3 used here for comparison is the published prices for academic
customers. The price is calculated based on the actual costs incurred by the operations and
management of the systems, their amortization and infrastructure costs (datacenter,
networking, storage etc.), costs for service development and a small risk buffer.

2 https://aws.amazon.com/ec2/pricing/
3  https://research.csc.fi/pricing-of-computing-services
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Price-performance comparison

For comparing the price competitiveness of cloud resources in term of compute performance we
have used instances that provide the closest possible match to CSCs regular compute nodes in
Sisu supercomputer and Taito cluster. We normalize the comparison to correspond to a node
with a theoretical performance of 1 TFlops. The prices are converted to Euros using an exchange
rate  of  1  Euro =  1.11 US Dollar  (May 31,  2016).  The prices  offered by  the cloud vendors  are
typically not stable, but vary over time. For AWS EC2 spot prices we use the median value for
May 15th - June 30th, while the Google cloud platform pricing for preemptible instances
represents a typical price for that time period. Other prices have been collected in May 2016.

Table 1. Pricing for compute intensive nodes

On AWS EC2, even the most cost-effective compute intensive instances, where the instance is
reserved for 3 years and paid upfront, are twice as expensive as CSC servers (Table 1).  Spot prices
on AWS and preemptable instances on Google cloud are marginally cheaper (10%) than the node
pricing at CSC, but the spot instances have a much lower reliability than CSC resources. To utilize
these the workflow has to be able to run the jobs on unreliable instances which can be
terminated at any time. This further increases the complexity of using the resources, and
decreases the fraction of workflows that can be adapted to it.  An example of such workflows is
globus genomics6.  The HPC centric cloud providers (Nimbi, Sabalcore) are more than three times
as expensive.

4 https://research.csc.fi/pricing-of-computing-services
5 https://aws.amazon.com/ec2/pricing/
6 https://www.globus.org/genomics

System Pricing model € per normalized node hour € per GB hour

CSC - Sisu 0.5294 0.0083

AWS EC2 - c4.8xlarge

spot 0.493 0.0055

on-demand 2.295 0.027

reserved 1.04 0.013

Google Cloud Platform -
 n1-highcpu-32

spot 0.543 0.010

on-demand 1.861 0.038

reserved 1.297 0.0265

Nimbix on-demand 6.551 0.0170

Subscription 4.330 0.0113

Sabalcore Academic price 1.516 0.0118
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In data intensive computing the amount of memory can oftentimes become a limiting factor. In
the table below we compare the cost with the amount of memory used, and normalize the price
by reporting the cost per GiB per hour. While the exact capacity differs, we can identify 3 fairly
comparable scenarios:

1. Normal: 60 - 128 GB  / node
2. Large: 160 - 256 GB / node
3. Huge: 1500 - 2000 GB / node

The normal case is covered by the previous section on compute intensive nodes. In Table 2 the
data intensive large memory nodes are detailed.

Table 2. Pricing for data intensive nodes

System Memory
size

Pricing
model

€ per normalized
node hour

€ per GB
hour

Taito L 0.529 0.00206

Taito H 0.491 0.00059

AWS -
r3.8xlarge

L

spot 1.404 0.00166

on-
demand

8.34 0.0109

reserved 3.41 0.0044

AWS -
x1.32xlarge

H

spot 0.680 0.00074

on-
demand

6.123 0.0074

reserved 1.712 0.0021

When focusing on the price per GB the story is similar,  Spot prices on AWS EC2 are competitive,
with 20% lower price for large memory sizes and 25% higher prices per GB for huge memory
sizes. The more typical on-demand and reserved instances are already significantly more
expensive. For example the on-demand price per GB for large memory size instances is 430%
higher, and for huge memory size instances 1154% higher.
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Benchmarks

For  the benchmarking we set  up a  small  test  cluster  to  AWS EC2 using a  modified version of
Elasticluster7. We added support to Amazon Linux 16.03 and modified the provisioning so that
all instances are added to same placement group in order to get the best network performance.
We chose Amazon Linux because it supports the Single Root I/O Virtualization (SR-IOV) without
any additional kernel configurations.  Additionally we also manually set up a cluster by installing
openMPI on Amazon Linux 16.03 instances (AWS in the figures).

Message-passing performance

Message  Passing  Interface  (MPI)  is  the  de  facto  standard  parallelization  strategy  in  scientific
computing, and nearly all parallel scientific applications have implemented their intra-node
communication using it. We evaluated the performance of the MPI communication on different
platforms using the Intel MPI Benchmarks suite8 version 4.1.

First, we measured the network characteristics dictating the overall MPI performance: ping-pong
latency and the message bandwidth. The measurements in the AWS EC2 on c4.x8large instances
are compared to those carried out in a Cray XC40 supercomputer (Sisu) at CSC. Furthermore, as
the overall performance of many parallel applications depend on the performance of MPI
collective operations (rather than raw bandwidth), we benchmarked also the MPI_Alltoall
routine, which is the bottleneck communication operation in, among others, scientific algorithms
featuring spectral methods (e.g. Fast Fourier Transforms).

The  Figure  1  illustrates  the  MPI  ping-pong  latency  (smaller  latency  equals  to  better
communication performance) as a function of the message size, measured between two MPI
tasks placed on different nodes. Note the logarithmic scale on both axis. Cray's Aries network
appears to be at least 100 times lower latency than EC2 or cPouta with all message sizes, even
more pronouncedly so with small messages where latencies define the observed performance.
Already based on the latencies it looks quite impossible to efficiently run typical MPI applications
across multiple nodes on any of the available cloud computing platforms featuring an Ethernet
interconnect.

Next, we measured the point-to-point communication bandwidth (higher is better) available for
two MPI processes located on different nodes, presented in Figure 2. Note again the logarithmic
scales. The interconnect of the Cray XC is able to provide 20,000 MB/s bandwidth with certain
message  sizes,  whereas  the  highest  bandwidth  of  the  AWS  EC2  or  Alces  Flight  is  430  MB/s.
cPouta's 40 Gb Ethernet gives higher bandwidth for large messages, reaching almost 1000 MB/s
at the maximum.

7 http://gc3-uzh-ch.github.io/elasticluster/
8 https://software.intel.com/en-us/articles/intel-mpi-benchmarks
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Figure 1. MPI ping-pong latency as a function of the message size.

Figure 2. MPI ping-pong bandwidth as a function of the message size.

While the ping-pong latency and bandwidth measure more the capability of the interconnect
than the MPI library (implementation) itself, MPI collective operations are heavily dependent on
the implementation - a collective can be slow even on a fast interconnect if the implementation
does not fully utilize the network capabilities. The measurements of the average throughput time
of MPI_Alltoall as a function of message (size of the data sent to all other tasks, by each task) are
presented in Figure 3.
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These were measured with 144 MPI tasks on 8 nodes. The MPI_Alltoall operation seems to be
systematically some 10 times faster on the Cray XC40 than on the cloud platforms for messages
up to 128 byte in size. With larger messages than that, something on the EC2 and cPouta both
makes the difference to bounce up. With 1024 byte and larger messages the operation becomes
so slow on EC2 that the run aborts because of a network timeout. Based on these measurements,
it appears impossible to execute efficiently MPI applications dependent on the MPI_Alltoall
operation on the cloud platforms.

Figure 3. Performance of MPI_Alltoall as a function of the message size.

Storage performance

The storage performance was tested using the FIO benchmark with the sequential and random
reads and write rates (operations/s) presented in Table 3 and the read/write bandwidths
presented in Table 4.  Sequential operations used 4MB block size and random operations used
4kB block size.

Table 3. Results of the FIO benchmark.

Storage Read IOPS Write IOPS

Pouta io.* 148261 135698

AWS io1 18153 17175

AWS i2.8xlarge 222182 184422
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AWS's storage-intensive instances give the best IOPS performance but are also fairly expensive.
The I/O intensive volumes (io1) in Amazon EBS service give a considerably poorer performance
and are capped at 20000 IOPS. Overall the performance is quite good in all cases compared to
regular spinning disk instances which typically range from 100s to few 1000s of IOPS.

 Table 4. High throughput (high bandwidth) storage option benchmarks (single node) 9

Storage Read BW (MiB/s) Write BW (MiB/s)

CSC Lustre file system 1794 1790

Sisu DataWarp 7530 1637

Pouta std 1353 498

AWS st1 538 541

The bandwidth was measured using different filesystems which are optimized for bandwidth
intensive operations. In these cases the shared Lustre filesystem is notably faster than the cloud
options. The specialized DataWarp nodes in Sisu provide extremely high bandwidth especially for
read operations, thanks in part to the very high-speed Aries interconnect network.

It should be noted that in the tests a single server was reading and writing data. With parallel
computations  oftentimes  multiple  nodes  are  used  for  file  operations.  In  these  cases  at  least
DataWarp and Lustre can scale to >10GiB/s.

Application performance: Gromacs

In addition to the synthetic MPI benchmark we also ran molecular dynamics code Gromacs10 as
a representative test case of an application that requires a good interconnect. Gromacs is one of
the most used codes at CSC, and on HPC systems worldwide. In 2015, 78 million core hours were
used on running Gromacs on CSC computing platforms, equaling to 1.7 M€ as the total value of
the computing time.

The test case was taken from the Unified European Applications Benchmark Suite (UEABS)11 (test
case A), and tested using Gromacs version 5.1.1. Figure 4 shows the scientific throughput of
Gromacs (ns/day, i.e. how much the simulation progresses in time in a given wall-clock time),
higher number equaling better performance. On Sisu, one is able to achieve some 180 ns/day
performance with 16 compute nodes. On the cloud platforms, no speedup is obtained by adding
more nodes after one full node, and one is inherently limited to 20 ns/day scale, no matter how
many nodes are being employed. This can be attributed to the poor MPI_Alltoall performance
discussed earlier. The lack of parallel scalability is a serious issue, since typically one needs good

9 The parameters used for fio were: --ioengine=libaio --iodepth=16 --direct=1 --size=80G --numjobs=8 --
runtime=240 --group_reporting
10 http://www.gromacs.org/
11 http://www.prace-ri.eu/ueabs/
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enough performance to be able to simulate the system for long enough within a reasonable
amount of time.

Gromacs  features  also  a  GPU  (CUDA)  implementation  of  the  main  computational  kernel.  We
compared the Gromacs performance on the K80 GPU nodes in CSC's Infiniband cluster Taito
(Taito GPU on the figure) with the AWS GPU instances (AWS G2). The observed ns/day rates are
presented  in  the  same  Figure  4  as  the  CPU  results  discussed  earlier.  Gromacs  uses  single-
precision floating point operations with GPUs so the case is well-suited for the GPUs available on
AWS. Any codes requiring double precision are infeasible to run on the AWS GPUs, due to the
very low double precision peak performance. Again, issues related to the insufficient
interconnect hit the AWS GPU results: running on two nodes is two times slower than running
on a single GPU instance. On an Infiniband-based GPU cluster, the GPU version is able to harness
the computing power of a few GPU nodes.

Figure 4. Performance Gromacs 5.1.1 as a function of the number of compute nodes.

Application performance: Biobench2

In addition to the benchmarks that stress the communication layer we also ran the Biobench2
benchmark suite12. This suite includes a selection of widely-used bioinformatics applications
together  with  input  datasets.  We  excluded  BLAST  from  the  suite  because  of  the  size  of  the
reference  dataset  (40GB).  The  applications  are  listed  in  Table  5.  Most  of  these  applications
require good I/O bandwidth and they also do a very high number of I/O operations.

Amazon EC2 results were computed using c3.2xlarge instances with provisioned 3600 IOPS
volume of size 120GB. Comparison results on Taito were computed using Taito cluster nodes that
have a raid array of local disks and Sandy Bridge CPUs. Pouta tests were run on the Pouta I/O

12 https://wiki.hpcc.msu.edu/display/Bioinfo/Bioinformatics+Benchmarking
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instances. Comparison of results is given in Table 5. Here the EC2 is faster than Taito nodes in
most tests by 10-30%, with an exception in HMMER. This is due to the slightly faster and newer
CPU (2.8GHz Ivy Bridge vs 2.7GHz Sandy Bridge) and newer and faster SSD storage. The Pouta
nodes with their high performance SSDs are in most cases (ClustalW2, HMMER, QuEST, Velvet)
faster than AWS EC2. In this kind of application load the performance is determined by the node
(CPU, memory, SSD) performance and the cloud instances provide an appealing yet less cost-
efficient alternative.

Table 5. List of bioinformatics applications that were used for benchmarking, and performance on EC2,
Taito and cPouta

Application Version Description

Execution time (s)

EC2 Taito cPouta

BEDTools 2.12.0 A flexible suite of utilities for for
comparing genomic features.

5.1 5.6 6.1

ClustalW2 2.1 General purpose multiple
sequence alignment program for
DNA of proteins.

176 197 157

HMMER 3.0 Used for searching sequence
databases for homologs of protein
sequences, and for making protein
sequence alignments.

47 34 38

MUMmer 3.22 A system for rapidly aligning entire
genomes.

82 97 88

QuEST 2.42 Statistical software for analysis of
ChIP-Seq data and peak calling.

742 974 698

Velvet 1.1.05 A popular sequence assembler for
very short reads.

63 70 59
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Conclusions and discussion

Existing commercial clouds are not suitable for parallel HPC workloads.

The benchmarks here, and elsewhere13, show that parallel applications featuring anything more
complex than embarrassingly parallel communication patterns cannot efficiently employ more
than one computing node. This means that the vast majority of the scientific workload being run
at CSC cannot be efficiently executed on a cloud platform; 87% of CPU cycles at CSC were spent
in jobs using more than 32 cores in 2015.

The main reason for this lack of performance is that the large commercial cloud infrastructures
are built on Ethernet interconnects, which have considerably higher latency and lower bandwidth
that Infiniband (used in Taito) or proprietary interconnects such as Cray Aries (used in Sisu). Some
performance  gains  can  be  obtained  by  accessing  the  network  card  directly  (SR-IOV  or  PCI
passthrough). However, these do not completely solve the performance issues14.

Additionally, the largest simulations on Sisu utilize well over 10,000 cores. Running these huge
simulations in a cloud will not be feasible to run due to overhead from virtualization, even if there
would be cloud services offering high performance networks.  This means that for the high-end
workloads there are no alternatives to supercomputing centers and infrastructures.

Commercial clouds are not price-competitive.

In  the  price-performance  comparison  it  was  shown  that  the  only  instances  that  have  a
comparable price-performance ratio to CSC is spot priced AWS EC2 instances, and preemptable
instances on Google cloud. Reserved and on-demand instances are significantly more expensive.
The big drawback in spot pricing is that the price for these instances fluctuates, and they may not
be available at a reasonable cost and can be terminated at any time. This limits the the fraction
of workflows that can be adapted to it. Also, as discussed above parallel applications can in any
case not be efficiently run on these resources.

For parallel applications one may turn to the HPC centric cloud providers listed earlier. They use
Infiniband, and while we have not benchmarked their performance we expect them to provide
good performance for medium sized parallel jobs using up to one thousand cores. Looking at
pricing shows that these HPC cloud providers are even more expensive, with more than three
times higher cost per node hour (Table 1.)

In addition to the costs related to compute resources there will also be charges for data transfers
and storage. Depending on the case at hand these can range from being very small, to being very
large. These may also lead to a lock-in effect, where it is difficult to change to another computing
platform since retrieving data from deep storage such as AWS Glacier and data transfer costs can
make it too expensive to move the data.

13 G. K. Lockwood, M. Tatineni, and R. Wagner, “SR-IOV: Performance Benefits for Virtualized
Interconnects,” in XSEDE ’14, 2014, pp. 1–7.
14 J. Zhang, X. Lu, and D. K. Panda, “Performance Characterization of Hypervisor-and Container-Based
Virtualization for HPC on SR-IOV Enabled InfiniBand Clusters,” 2016, pp. 1777–1784.
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The main reasons for the competitiveness of CSC’s resources can primarily be attributed to the
following facts:

1. There is little margin of profit in the pricing.
2. Since the system is accessed through a queuing system designed for scientific

computing it can maintain very high level of utilization. In a cloud environment a large
fraction of the resources are idle, to be able to cope with spikes in demand.

3. The infrastructure is optimized to serve the particular needs of the Finnish scientific
computing community. This means that investments, in-house development and user
support are sharply focused on this task instead of trying to provide something for
everyone, which adds overhead.

Looking toward the future infrastructure at CSC it can be noted that as system size grows, the
amount of personnel needed to administer and operate it stays fairly fixed. As CSC pricing is
based on actual costs, a larger system will have a lower per core price. An infrastructure that is
twice as large, the price per core hour is further reduced by approximately 13%.

In-house cloud and containers offer great opportunities for CSC and CSC customers.

CSC is one of the world’s leading HPC centers in providing cloud services: Production cloud
services have been running since 2010, there is strong technological expertise in-house, and
cloud computing has a central role in CSC's strategy. These resources will be further developed
and expanded.

Many  CSC  customers  using  the  cPouta  cloud  are  working  on  big  data  workloads  and
bioinformatics. For these workloads cloud is a suitable solution, since the interconnect
performance is typically not a major concern. The BioBench2 benchmark also shows (Table 5)
that the cloud provides good performance for bioinformatics.

Sensitive data, such as patient data, typically cannot be processed in commercial public clouds
due to legislation. Even setting up a private cloud that can meet the strict compliance
requirements to process such data is not trivial. CSC has developed ePouta to explicitly meet this
need. Even with less sensitive data there may be data governance and information security issues
if the cloud infrastructure is located abroad.15 All of CSC’s cloud resources are located in Finland.

The emergence of container technologies, most notably Docker, has the potential to enable also
domain specific computing environments on clusters and supercomputers with much reduced
overhead16 compared to virtualization. It also enables efficient scheduling of tasks even when
the system is highly loaded using HPC batch job queue systems such as SLURM. There are two
notable projects in this space, Singularity17 and Shifter18, which are already running in production
at major HPC sites and they are being also evaluated at CSC at the time of writing.

15  Cloud Computing Benefits, risks and recommendations for information security:
https://resilience.enisa.europa.eu/cloud-security-and-resilience/publications/cloud-computing-benefits-
risks-and-recommendations-for-information-security
16  J. Zhang, X. Lu, and D. K. Panda, “Performance Characterization of Hypervisor-and Container-Based
Virtualization for HPC on SR-IOV Enabled InfiniBand Clusters,” 2016, pp. 1777–1784.
17 http://singularity.lbl.gov/
18 http://www.nersc.gov/research-and-development/user-defined-images/
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