
Elmer

Parallel Scalability & Bottle-necks

ElmerTeam

CSC – IT Center for Science Ltd.

PARA2012 Tutorial

Finlandia Hall, June 2012

Requirements of parallel scalability

All steps in the workflow must be considered

Preprocessing

– Lack of parallel tools

-> bottle-necks in {memory, time, I/O}

– Some possible remedies

Computation

– Algorithmic scalability with the problem size

(weak scaling)

– Effective parallel implementation (strong scaling)

Postprocessing

– Excellent parallel tools

– Some possible ways to reduce the data

Analysis of serial workflow

A simple Poisson problem was solved with one core

Time consumed for each step was analyzed as a

function of problem size N

Observations were fitted to the model: T=aNb

solution time (GMG)

 > unstructured meshing time (gmsh)

 > partitioning time (Metis)

 > structured meshing time (ElmerGrid)

Scalability of each step almost linear (b  1-1.1)

CPU time for serial pre-processing and solution

Scalability model

Overcoming bottle-necks in preprocessing

Meshing is often the most difficult bottle-neck

– Serial tools used to create up to ~1-10 M nodes

Options for larger problems

– Parallel mesh generation

– Finalizing the mesh in parallel level

Mesh partitioning is almost always less laborious

than meshing

– Serial partititioning is seldom a problem

– There are parallel versions of partitioning tools:

ParMetis

CPU time for structured pre-processing

CPU time for unstructured pre-processing

Parallel mesh generation

Parallel mesh generation is still

in its infancy

No freely available established

tools (?)

Preliminary work for Elmer performed within PRACE in

Bogazigi Univ., Istanbul

– Y. Yılmaz, C. Özturan*, O. Tosun, A. H. Özer, S. Soner

“Parallel Mesh Generation, Migration and Partitioning for the

Elmer Application”

– Based on netgen serial mesh generation

– Generate coarse mesh -> partition -> mesh refinement

– ”mesh with size 1.4 billion could be generated in under a minute”

– Still experimental, writes mesh into disk for Elmer to read

-> Introduces a possible I/O bottle-neck

Ultimately parallel mesh generation should be integrated with an

API rather than disk I/O

Parallel mesh generation: performance

Y. Yılmaz et. al.

“Parallel Mesh Generation, Migration and

Partitioning for the Elmer Application”

Finalizing the mesh in parallel level

First make a coarse mesh and partition it

Division of existing elements (2^DIM^n -fold problem-

size)

– Known as ”Mesh Multiplication”

– In Simulation block set ”Mesh Levels = N”

– There is a geometric multigrid that utilizes the mesh hierarchy

– Simple inheritance of mesh grading

Increase of element order (p-elements)

– There is also a p-multigrid in Elmer

Extrusion of 2D layer into 3D for special cases

– Example: Greenland Ice-sheet

For complex geometries this is often not an option

– Optimal mesh grading difficult to maintain

– Geometric accuracy cannot be increased

Mesh Multiplication, example

Mesh multiplication was applied to two meshes

– Mesh A: structured, 62500 hexahedrons

– Mesh B: unstructured, 65689 tetrahedrons

The CPU time used is negligible

Mesh #splits #elems #procs T_center

(s)

T_graded

(s)

A 2 4 M 12 0.469 0.769

2 4 M 128 0.039 0.069

3 32 M 128 0.310 0.549

B 2 4.20 M 12 0.369

2 4.20 M 128 0.019

3 33.63 M 128 0.201

Analysis of algorithmic scalability

Scalability of algorithms may be studied also in

serial simulation

– Observations of relevant as long as the parallel

algorithm has at best the same properties

Experiments show that only multigrid methods

provide almost linear scaling

– Power 1..1.2

– Krylov methods ~1.5 in 2D and ~1.4 in 3D

CPU time for solution – one level vs. multilevel

Parallellism in Elmer library

Parallelization with MPI

– Some initial work on hybrid methods i.e. Open MP + MPI

Assembly

– Each partition assemblies it’s own part, no communication

Parallel Linear solvers included in Elmer

– Iterative Krylov methods

CG, BiCGstab, BiCGStabl, QCR, GMRes, TFQMR,…

Require only matrix-vector product with parallel communication

– Geometric Multigrid

Utilizes mesh hierarchies created by mesh multiplication

– Domain Decomposition: FETI

– Preconditioners

ILUn performed block-wise

Diagonal and Vanka exactly the same in parallel

Multigrid methods more robust as preconditioners

Parallel external libraries for Elmer

MUMPS

– Direct solver that may work when averything else fails

Hypre

– Large selection of methods

– Algebraic multigrid: Boomer MG

– Parallel ILU preconditioning

– Approximate inverse preconditioning: Parasails

Interface to Trilinos

– Implemented by Jonas Thies, Univ. of Uppsala

Observations in parallel runs

Typically good scale-up in parallel runs requires around

1e4 dofs in each partition

– Otherwise communication of shared node data will start to

dominate

– In 3D the number of shared nodes for each partition is

~(N/P)^(2/3) giving rise to a speedup-up of ~1.58 at doubling of

partitions even if communication dominates

To take use of the local memory hierarchies the local

problem should not be too big either

– Sometimes superlinear speed-up is observed when the local

linear problem fits to the cache memory

Good scaling has been shown up to thousands of cores

Simulation with over one billion unknowns has been

performed

Parallel performance

Cavity lid case solved with the

monolithic N-S solver

Partitioning with Metis

Solver Gmres with ILU0

preconditioner

Louhi: Cray XT4/XT5 with 2.3 GHz 4-core

AMD Opteron. All-in-all 9424 cores and Peak

power of 86.7 Tflops.

Simulation Juha Ruokolainen

CSC, visualization Matti Gröhn, CSC .

Parallel computation, example

Poisson equation with 100 M dofs

Mesh created from coarse mesh using mesh

multiplication

Solution with geometric multigrid (GMG) utilizing the

different mesh levels

Very good speedup up to ~1000 partitions

#procs T(P) / s T(P)/T(2P)

272 279 -

544 152 1.84

1088 76 2.00

2176 50 1.52

Louhi: Cray XT4/XT5 with 2.3 GHz 4-core

AMD Opteron. All-in-all 9424 cores and Peak

power of 86.7 Tflops.

Failure of standard methods, example

Already linear elasticity equation may pose problems for parallel solution

Case of linear elasticity with 500,000 unknowns

Many standard methods fail to converge, or scale sub-optimally

– Need for methods with better robustness & scalability

Method \ T (s) 1 2 4 16 32

Umfpack 53533

Pardiso 290 175 105 80 65

Mumps 285 190 135 86

BiCG+diag 1270 750 450 225 180

BiCG+ILU(1) 1690 1450 X 580 X

Hypre-BiCG+Parasails 505 295 145 110

Hypre-BiCG+ILU(0) X X 506 X

Note: Calculations performed on vuori.csc.fi cluster in 2010.

The solvers may have improved in performance since

FETI Implementation in Elmer

Finite Element Tearing and Interconnect

Domain decomposition method for solving linear

equations resulting from FEM

Robust parallel method for elliptic PDEs such as

Poisson’s or Navier’s (linear elasticity) equation

In each iteration requires solution of a primal problem in

each partition, and a dual problem on the global level

Number of iterations may be shown to be bounded

Related PARA2012 presentation:
V. Hapla et al.:

Massively Parallel Implementation of TFETI DDM on

PETSc and Trilinos

FETI Parallel performance

#procs Time / s #iters

27 10.52 26

64 12.30 29

125 9.27 31

216 9.96 31

343 10.26 32

512 11.18 32

729 12.13 33

1000 19.88 33

3375 31.52 35

Linear elasticity equation in

a unit cube with constant

loading from the side.

The size of the case

was kept fixed at 8000

elements for each partition.

The largest case includes

thus around 80 Mdofs.

Excellent weak scaling

up to 729 cores

Computations carried out

on Curie (CAE) in 2011

Example, Swiss cheese case with FETI

Total FETI

Umfpack as factorizer + ARPACK / Eigenvectors nullspace

detection

– Partititions not continuous

Lagrange multipliers used as fixing local system

#procs T_total/s T(N)/T(2N) T_factor/s #CPG_iter

s

2 222.51 84.70 55

4 84.62 2.63 15.27 60

8 63.54 1.33 4.89 80

16 22.76 2.79 1.30 100

32 26.05(?) 0.87 1.19 100

64 11.03 2.36 0.17 115

128 4.03 2.73 0.09 100

Example, Swiss cheese case with Hypre

Solution with Hypre

BiCGStab + Parallel ILU0

For this small case outperforms FETI

Strange variations; computing nodes weren’t reserved

#procs T_tot T(N)/T(2N)

2 16.31

4 11.52 1.41

8 6.86 1.67

16 5.37 1.28

32 5.16 1.04

64 1.03 5.00

Block preconditioning in Elmer

In Parallel runs a central challenge is to have good

parallel preconditioners

This problem is increasingly difficult for PDEs with vector

fields

– Navier-Stokes, elasticity equation,...

Idea: Use as preconditioner a procedure where the

components are solved one-by-one (like in Gauss-Seidel) and

the solution is used as a search direction in an outer Krylov

method

Number of outer iterations may be shown to be bounded

Individual blocks may be solved with optimally scaling

methods (AMG)

Related PARA2012 Presentation:
M. Malinen et al.

”Parallel Block Preconditioning by Using the Solver of Elmer”

Hybridization in Elmer

Preliminary work on

Open MP + MPI hybridization

Open MP pragmas have been

added for

– Matrix assembly

– Sparse matrix-vector multiplication

The current implementation is

efficient for

– iterative Krylov methods with

– diagonal or Vanka as preconditioner

Scaling within one CPU is excellent

Hybridization will become

increasingly important when the

number of cores increase

#threds T(s)

1 341

2 130

4 69

8 47

16 38

32 27

Table: Navier-Stokes equation solved with

BiCGStabl(4) and Vanka preconditioning

on a HP ProLiant DL580 G7 with quad-

core Intel Xeon processors.

Sparse Matrix-Vector product

In some cases up to 80% of time is used in sparse

matrix-vector product

Sparse matrix presentation (CRS) means indirect

memory addressing which kills performance

Could code efficiency be improved with improved matrix

presentation?

Related PARA2012 presentation:
V. Karakasis, G. Goumas et al.

“Using State-Of-The-Art Sparse Matrix Optimizations for

Accelerating the Performance of Multiphysics Simulations”

Matrix-vector product code in Elmer

!--

!> Matrix vector product (v = Au) for a matrix given in CRS format.

!--

 SUBROUTINE CRS_MatrixVectorMultiply(A,u,v)

!--

 REAL(KIND=dp), DIMENSION(*), INTENT(IN) :: u !< Vector to be multiplied

 REAL(KIND=dp), DIMENSION(*), INTENT(OUT) :: v !< Result vector

 TYPE(Matrix_t), INTENT(IN) :: A !< Structure holding matrix

!--

 INTEGER, POINTER CONTIG :: Cols(:),Rows(:)

 REAL(KIND=dp), POINTER CONTIG :: Values(:)

 INTEGER :: i,j,n

 REAL(KIND=dp) :: rsum

!--

 n = A % NumberOfRows

 Rows => A % Rows

 Cols => A % Cols

 Values => A % Values

!$omp parallel do private(j,rsum)

 DO i=1,n

 rsum = 0.0d0

 DO j=Rows(i),Rows(i+1)-1

 rsum = rsum + u(Cols(j)) * Values(j)

 END DO

 v(i) = rsum

 END DO

!$omp end parallel do

!--

 END SUBROUTINE CRS_MatrixVectorMultiply

!--

Overcoming bottle-necks in postprocessing

Visualization

– Paraview and Visit excellent tools for parallel visualization

– Still the sheer amount of data may be overwhelming and access to all

data is often an overkill

Reducing data

– Saving only boundaries

– Uniform point clouds

– A priori defined isosurfaces

– Using coarser meshes for output when hierarchy of meshes exist

Extracting data

– Dimensional reduction (3D -> 2D)

– Averaging over time

– Integrals over BCs & bodies

More robust I/O

– Not all cores should write to disk in massively parallel simulations

– HDF5+XDML output available for Elmer, mixed experiences

Memory consumption of files, example

Memory consumption of vtu-files (for Paraview) was studied in

the ”swiss cheese” case

The ResultOutputSolver with different flags was used to write

output in parallel

Saving just boundaries in single precision binary format may

save over 90% in files size compared to full data in ascii

With larger problem sizes the benefits are amplified

Binary output Single Prec. Only bound. Bytes/node

- X - 376.0

X - - 236.5

X X - 184.5

X - X 67.2

X X X 38.5

Relative importance of bottle-necks

Serial runs

– Solution is typically the bottle-neck

– Algorithmic scalability not a major issue

Small parallel runs (P~=10)

– Balance between pre- prosessing rather good

– Algorithmic scalabity already a concern

Large parallel runs (P~=100)

– Preprocessing often a bottle-neck but just managable

– Postprocessing may be heavy and requires consideration

Massively parallel runs (P~>1000)

– All phases require special attension

– Preprocessing either cheap and simple, or complex and parallel

– Postprocessing often requires parallel strategies

– Extra care must be be put to the finest details

Just taking an FE norm may introduce a bottle-neck

Recipes for optimal scalability in Elmer

Finalize mesh on a parallel level (no I/O)

– Mesh multiplication or parallel mesh generation

Use algorithms that scale well

– I.e. Multigrid methods

If the initial problem is difficult to solve effectively

divide it into simpler sub-problems

– One component at a time -> block preconditioners

GCR + Block Gauss-Seidel + AMG + SGS

– One domain at a time -> FETI

– Splitting schemes (e.g. Pressure correction in CFD)

Analyze results on-the-fly and reduce the amount of

data for visualization

