
Laxmana Yetukuri, Maria Lehtivaara
CSC – IT Center for Science, Finland

chipster@csc.fi

RNA-seq data analysis:
How to find differentially expressed genes?

Using command line tools + R 



Welcome! 
Some practical matters:
Ø Keycard 

• Please keep it with you at all times
• Lunch ticket
• QR reader on the door –knowing this, you can leave your

belongings in the classroom at your own risk
Ø Parking 

• You need to get a permission from Info desk
Ø Schedule

• Is on the course webpage –not set in stone J
Ø GDPR!

• Careful when using the classroom computers
Ø Foods & drinks

• We don’t allow those in the classroom –water bottles ok J
• Coffee/tea breaks in the training lobby
• Lunch at the two restaurants in this building



Schedule (draft)
Ø Thursday 6.2.

• 9:00 First session: 
Welcome & 
Introductions

• 10:00 Coffee break
• 10:30 Second session: 

Quality control and 
preprocessing

• 12:00 Lunch
• 13:00 Third session: 

Alignment
• 14:30 Coffee break
• 15:00 Fourth session: 

Quantitation, 
Experimental design, 
wrap up for the day

Ø Friday 7.2.
• 9:00 First session: 

Differential expression 
analysis in R

• 10:00 Coffee break
• 10:30 Second session: 

Annotations and 
enrichment analysis

• 12:00 Lunch
• 13:00 Third session: 

Analysing in Puhti + Allas
• 14:30 Coffee break
• 15:00 Fourth session: 

Other topics + wrap up



Understanding your data analysis - why?
Ø You know your own experiments best

• Biology involved (e.g. genes, pathways, etc)
• Potential batch effects etc

Ø You can tune the parameters, ”play around” and learn more
about your data
• Bioinformaticians might not always be available when needed

Ø Allows you to design experiments better

• Enough replicates, reads etc à less money wasted

Ø Allows you to discuss more easily with bioinformaticians



What will I learn?
Ø Introduction to RNA sequencing
Ø The basics in differential gene expression analysis

• Central concepts
• Analysis steps
• File formats

Ø How to operate bunch of tools used in the exercises
• In command line (we use virtual machine that mimics CSCs Puhti 

environment)
• In R (R included in the VM)

Ø How to do the analysis effectively: running a batch job
• In CSC’s Puhti supercomputer

Ø Things to take into account when designing experiments 



Rawfiles.fastq

Raw Sequence Data

Raw Data QC
(FastQC, PRINSEQ)

Read  Alignment
(HISAT2) 

Trimming
(PRINSEQ, Trimmomatic)

Quantification
(HTSeq)

Differential analysis
(edgeR, DESeq)

DE Gene list

Ref_genome.fasta

Gene_annotations.gtf

Post-Alignment QC
(RseQC) 

Gene_annotations.bed



Introduction to RNA-seq



What can I investigate with RNA-seq?

Ø Differential expression
Ø Isoform switching
Ø New genes and transcripts
Ø New transcriptomes
Ø Variants
Ø Allele-specific expression
Ø Etc etc



Development of sequencing methods

https://databricks.com/blog/2016/05/24/genome-sequencing-in-a-nutshell.html



Sequencing technologies

Ø Sequencing by synthesis à Illumina
Ø Pyrosequencing à Sanger, 454
Ø Ion semiconductor sequencing à Ion Proton
Ø Sequencing by ligation à SOLiD system
Ø Single molecule real time sequencing à PacBio

Illumina MiSeq Illumina HiSeq 454 Sequencer

SOLiD system
Ion Proton

PacBio



Semiconductor sequencing

Ion Proton / Ion Torrent
/Illumina

https://www.slideshare.net/ueb52/introduction-to-next-generation-sequencing-v2



How is the data produced?

sequencing

Samples (replicates) 

DNA fragments with adapters

Reads 
(FASTQ 

files)

Isolate RNAs

-generate cDNA
-amplify
-fragment
-size select
-add adapters

RNA

Raw data

TGCTAC…
AATGCG…
GTGACA…
CACTAG…

Data analysis

sequencer



flow cellSequencing by synthesis (Illumina)

flow cell

cluster

1 sequencing cycle
= 1 base

https://www.illumina.com/doc
uments/products/techspotlight
s/techspotlight_sequencing.pdf

terminator



Sequencing by synthesis (Illumina)
Ø From images to FASTQ file

FASTQ file:
…
@read name
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 
+ read name
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65
…

1) Image files (4 
images per cycle)

2) Intensity table 
(4 values for each 
cluster & each cycle)

3) FASTQ file with the read 
sequences & quality values 
for each base



Sequencing by synthesis (Illumina)
Ø Now, how the flowcell and cluster ACTUALLY look like…

…Except with NextSeq, where
you actually have just two
channels…



…and the same with two channels

Ø https://www.ecseq.com/support/ngs/do_you_have_two_colors
_or_four_colors_in_Illumina

MiniSeq
NextSeq
NovaSeq

HiSeq
MiSeq



Illumina devices

Ø MiSeq (microbes, viruses, targeted panels)
• 4-55 h
• 25 M reads per run
• max. 2 x 300 bp

Ø NextSeq (exomes, transcriptomes)
• 12-30 h
• 400 M reads per run 
• 4 lanes (each sample goes to all 4 lanes)
• max. 2 x 150 bp

Ø HiSeq 2500 (whole genomes)
• Up to 6 days
• max. 2 x 250 bp
• 300 M – 4 G reads per run

What is it 
good for

How long 
it takes

Reads per 
run

Max read 
lengt (bp)

Lanes

MiSeq Microbes, 
viruses,
targeted 
panels

4-55 h 25 M 2 x 300 1

NextSeq Exomes, 
transcripto
mes

12-30 h 400 M 2 x 150 4
(all 
samples to 
all 4 lanes)

HiSeq 2500 Whole 
genomes

Up to 6 
days

300 M – 4 
G

2 x 250 8 
(different
samples to 
different 
lanes)

NovaSeq
(2017)

Whole 
genomes,
scalable

20 – 40 h 1.6 – 20 G 2 x 150 



How was the data produced?

sequencing

Samples (replicates) 

DNA fragments with adapters

Reads 
(FASTQ 

files)

Isolate RNAs

-generate cDNA
-amplify
-fragment
-size select
-add adapters

RNA

Raw data

TGCTAC…
AATGCG…
GTGACA…
CACTAG…

Data analysis

sequencer



How was your data produced?

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

PolyA purification

cDNA generation
& fragmentation 

Library construction

Size selection



Paired-end vs 
single-end reads

Insert length



Differently sized fragments & inner distance

Ø Illumina reads are always of same length
Ø But the size of the initial mRNA fragment (=insert) may vary

https://www.ecseq.com/support/ngs/why-do-the-reads-all-have-the-same-length-when-sequencing-differently-sized-fragments



Read length = number of sequencing cycles
…ACTCACGTGTACGTAGCTAGTTTACGACTGACTCGCAGTAC
ATGCGCTCGTGGATCACTCGCTACTGCACTACGACTACGACAT
ATCAGCGGCATCGTGATCGGGCATGCATCGTACGCACTGATA
TACGCATAATCAGCTACGATCAGCATTATTCACCTACTATCACTC
CACATCACTTTAACCTGCGGGACTGACGTGACGTCACAAAAA…

ADAPTER-CGTGGATCACTCGCTACTGCACTACGACTACGACAT
ATCAGCGGCATCGTGATCGGGCATGCATCGTACGCACTGATA
TACGCATAATCAGCTACGATCAGCATTAT-ADAPTER

Inner distance

Read 1: CGTGGATCACTCGCTACTGCACTACGACTACGACA 
Read 2: CTGATATACGCATAATCAGCTACGATCAGCATTATA

mRNA 
molecule
(3000
bases)

mRNA 
fragment
(500
bases)

Reads
(100
bases 
each)

Question: In our example, what is the inner distance?



Strandedness

Ø Several methods 
Ø Stranded/directional method = you have the 

information of which strand the sequence originally 
came from



Stranded RNA-seq data
Ø Tells if a read maps to the same strand where the parental gene 

is, or to the opposite strand
• Useful information when a read maps to a genomic location where 

there is a gene on both strands
Ø Several lab methods, you need to know which one was used

• TruSeq stranded, NEB Ultra Directional, Agilent SureSelect
Strand-Specific…

read

read

Unstranded data: 
Does the read come 
from geneA or 
geneB?

Stranded data
à the read comes 
from geneA



Stranded / directional RNA-seq data
Ø Important to indicate which one was used in some analysis tools

• parameter naming differs in different tools
• You can check this with a RseQC tool

Strandedness: TopHat HISAT2 HTSeq

Read (1) and 
transcript on 
opposite strands

Fr-firststrand --rna-
strandedness
R (SE) / RF 
(PE) 

--stranded 
reverse

Read (1) and 
transcript on the 
same strand

Fr-secondstrand --rna-
strandedness
F (SE) / FR (PE)

--stranded yes

No knowledge 
of where the 
read comes 
from

Fr-unstrand default --stranded no

gene
read

gene

read

++,--

+-, -+



Differential gene expression analysis



Gene vs. transcript/isoform level analysis

Leng et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments, Bioinformatics, 2013



Types of differential expression analysis

Ø DGE (differential gene expression): has the expression of a 
gene changed overall?

Ø DTE (differential transcript expression): has the expression of 
an individual transcript changed? 

Ø DTU (differential transcript usage): has the relative expression
of the different transcript isoforms of a gene changed?



What is differential gene expression, DGE?
Ø Test whether collective abundance of transcripts levels from a gene 

change between conditions? 

Null Hypothesis: 
There is no difference in the read distributions in two conditions 

• Estimate the magnitude of
differential expression between
two or more conditions based on
read counts from replicated
samples

• Estimate the significance of the
difference and correct for multiple
testing

Condition 1
Condition 2 



DGE analysis: typical steps

Gene A

Align reads to 
reference genome

Match alignment positions 
with known gene positions

Count how many reads 
each gene has

Gene B

A = 6 B = 11

Compare sample groups: 
differential expression
analysis

Raw data (reads)
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Gene A 6 5 7 170 100 110

Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1



DGE analysis: steps, tools and files

gene A gene B

Alignment
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Gene A 6 5 7 170 100 110

Gene B 11 11 10 3 4 2

Gene C 200 150 355 50 1 3

Gene D 0 1 0 2 0 1

BAM

Quantitation

Differential 
expression 
analysis

Gene lists 
(TSV)

Pre-
processing

Quality control

Quality control

Quality control

FastQC

Trimmo-
matic

HISAT2

RSeQC

HTSeq

PCA, 
clustering

DESeq2,
edgeR

STEP         TOOL       FILE

Read count 
table (TSV)

FASTQFASTQFASTQ

BAMBAM

Read count  
file (TSV)
Read count  
file (TSV)
Read count  
file (TSV)

Combine 
count files to 
table

FASTQFASTQFASTQ



Practical aspects of working environment
in our course 



Materials for the course
Ø Slides 

• available on the course webpage
Ø Tutorial 

• With the exercises
• Available here: https://research.csc.fi/rnaseq-tutorial

Ø Virtual machine image
• Ready on the classroom computers, downloadable from the 

tutorial page
Ø Course data

• Downloadable from the tutorial page
• Some data generated for you (like: indexes for alignment)

1. Data for the VM practises
2. Data for the Puhti practises

Ø “Bonus” material: video lectures in Youtube
• Link in the tutorial page



Workflow for the course

Ø Practising:
• Learning the analysis step by step

• Little bit of theory (what & why)
• Exercises in command line and in R (how)
• Now, we are using virtual machine (mimics CSCs Puhti supercomputer)

• Two datasets: 
• 2 ”toy samples” for the command line part -> only small part of the reads

(this is to save time)
• 10 ”real” samples for the R expression analysis part

Ø How to really do the analysis effectively: running a batch job
• In CSC’s Puhti supercomputer



Working environment for course
Ø RNAseq analysis: Interactive analysis

• Use virtual environment in the Oracle VirtualBox (= linux-like 
command line environment)

• Make use of all course installations for running RNAseq
analysis 

• Mimics CSCs Puhti supercomputer
• Downloadable for your own use also after the course
• Conda modules

Ø RNAseq analysis: Batch analysis
• Puhti Supercomputer for running analysis with multiple samples 

(as an array job)

Ø RNAseq analysis: Data navigation
• Allas environment at CSC for data navigation



Logging in & getting started with VirtualBox
Ø Log in to the classroom computer

• Password in the back of the classroom (turn your head)

Ø Use virtual machine image from VirtualBox
1. Go to “Applications” -> “System Tools” -> Oracle VM VirtualBox
2. Open image “RNAseq_v1” and click “Start”
3. Log in to virtual machine: press enter, password: rnaseq
4. Enter password ( press: enter tab) : rnaseq
5. Expect some glitches
6. Tune the window so that it fits nicely on your screen

1. View -> Virtual Screen 1 -> Scale Factor = 100%
2. View -> Auto-Resize Guest Display

7. Open Terminal

Ø Note: copy/paste in terminal:
• Ctrl + shift + c = copy & ctrl + shift + v = paste
• Or with mouse: paint the text to copy and double click to paste



Rawfiles.fastq

Raw Sequence Data

Raw Data QC
(FastQC, PRINSEQ)

Read  Alignment
(HISAT2) 

Trimming
(PRINSEQ, Trimmomatic)

Quantification
(HTSeq)

Differential analysis
(edgeR, DESeq)

DE Gene list

Ref_genome.fasta

Gene_annotations.gtf

Alignment QC
(RseQC) 

Gene_annotations.bed

What is inside VM: different software tools + R



Follow the tutorial page instructions in: 
https://research.csc.fi/rnaseq-tutorial

1. (Virtual Machine image is already downloaded on the 
classroom computers)

2. Download the RNAseq bundle from Allas object storage

3. “Untar” the raw data bundle

4. Rename the folder as rnaseq

5. Check the kind of data/files in the folder



Testing python and R environment in this VM

• Software tools are installed as conda packages and 
named as ‘rnaseq’ environment
• rnaseq environment = all necessary programs are 

installed for doing RNAseq analysis
• On the terminal, type: conda activate rnaseq

• To open Rstudio:
• R packages needed in the course also readyly

installed (no need to run installation commands!)
• conda activate base
• Rstudio
• …under Applications -> Programming -> rstudio



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis



Our data is “toy data”

Ø Small subset of RNA-seq reads from chr19
Ø Illumina single-end reads
Ø from two human cell lines: h1-hESC and GM12878 

(we practise with hESC sample).
Ø Note that when analyzing differential expression 

you should always have at least 3 biological 
replicates!

Ø We use this small dataset for the first steps of the 
analysis to save resources:
• running the exercises with full sample would 

take hours to complete
• file sizes would require a lot of memory, making it 

difficult to run the analysis on a VM



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis



What and why?

Ø Potential problems
• low confidence bases, Ns
• sequence specific bias, GC bias
• adapters
• sequence contamination
• …

Knowing about potential problems in your data allows you to
Ø correct for them before you spend a lot of time on analysis
Ø take them into account when interpreting results



Software packages for quality control

Ø FastQC

Ø PRINSEQ

Ø MultiQC

Ø FastX

Ø TagCleaner

Ø ...



Raw reads: FASTQ file format

Ø Four lines per read:
@read name

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 

+ read name

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65

Ø http://en.wikipedia.org/wiki/FASTQ_format

Ø Note: FASTQ files usually zipped (fastq.gz)

• Most analysis tools can cope with zipped files (.gz)

• For some, you need to unzip files: 

gunzip < hesc.fastq.gz > hesc.fastq



Base qualities
Ø If the quality of a base is 20, the probability that it is wrong is 0.01.

• Phred quality score Q = -10 * log10 (probability that the base is wrong)
T  C  A  G  T  A  C  T  C  G
40 40 40 40 40 40 40 40 37 35

Ø ”Sanger” encoding: numbers are shown as ASCII characters
• Note that older Illumina data uses different encoding

Phred Quality 
Score

Probability of 
Incorrect Base 

Call

Base Call 
Accuracy

ASCII coding 
in FASTQ file

10 1 in 10 90% +

20 1 in 100 99% 5

30 1 in 1,000 99.9% ?

40 1 in 10,000 99.99% I



Base quality encoding systems

http://en.wikipedia.org/wiki/FASTQ_format



Base quality encoding systems

http://en.wikipedia.org/wiki/FASTQ_format



Per position base quality (FastQC)

good

ok

bad



Per position base quality (FastQC)



Per position sequence content (FastQC)



Ø Enrichment of k-mers at the 5’ end due to use of random 
hexamers or transposases in the library preparation

Ø Typical for RNA-seq data
Ø Can’t be corrected, doesn’t usually effect the analysis

Per position sequence content (FastQC)



I have many FASTQ files – how can I quickly 
check them all?

Ø MultiQC
Ø Just run in your working directory –this will collect all the relevant files

multiqc .



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis



Filtering vs trimming

Ø Filtering removes the entire read 

Ø Trimming removes only the bad quality bases

• It can remove the entire read, if all bases are bad 

Ø Trimming makes reads shorter

• This might not be optimal for some applications

Ø Paired end data: the matching order of the reads in the two files 

has to be preserved

• If a read is removed, its pair has to removed as well



What base quality threshold should be used?
Ø No consensus
Ø Trade-off between having good quality reads and having enough 

sequence
Ø Start with gentle trimming and check with FastQC



Software packages for preprocessing

Ø Trimmomatic

Ø FastX

Ø PRINSEQ 

Ø TagCleaner

Ø ...



Trimmomatic options
Ø Adapters

• Cause: reading through the (too short) fragment
• You need: file listing the adapter sequences

Ø Minimum quality
• Per base, one base at a time or in a sliding window, from 3’ or 5’ 

end
• Per base adaptive quality trimming (balance length and errors)
• Minimum (mean) base quality

Ø Trim x bases from left/ right
Ø Minimum read length after trimming
Ø Copes with paired end data

Terminology:
Ø LEADING edge = 5’ end = left side = the beginning of the read
Ø TRAILING edge = 3’ end = right side = the end of the read

Read 1



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis



Alignment: 
Check the strandedness of your data



Was your data made with stranded protocol?
Ø You need to indicate it when:

• aligning reads to genome (e.g. HISAT2)
• counting reads per genes (e.g. HTSeq)

Ø If you don’t know if/which stranded sequencing protocol was
used, you can check it:
• with RseQC tool infer_experiment.py:

• First align a subset of the reads to genome, and then with 
infer_experiment.py compare the locations to reference annotation

• http://rseqc.sourceforge.net/#infer-experiment-py

Ø some help/summary collected here: 
https://chipster.csc.fi/manual/library-type-summary.html



RseQC strandedness report 



What does this ++, - - mean?
Single end:

++,--
read mapped to ‘+’ strand indicates parental gene on ‘+’ strand
read mapped to ‘-‘ strand indicates parental gene on ‘-‘ strand

+-,-+
read mapped to ‘+’ strand indicates parental gene on ‘-‘ strand
read mapped to ‘-‘ strand indicates parental gene on ‘+’ strand

Paired end:
1++,1–,2+-,2-+
read1 mapped to ‘+’ strand indicates parental gene on ‘+’ strand
read1 mapped to ‘-‘ strand indicates parental gene on ‘-‘ strand
read2 mapped to ‘+’ strand indicates parental gene on ‘-‘ strand
read2 mapped to ‘-‘ strand indicates parental gene on ‘+’ strand

1+-,1-+,2++,2--
read1 mapped to ‘+’ strand indicates parental gene on ‘-‘ strand
read1 mapped to ‘-‘ strand indicates parental gene on ‘+’ strand
read2 mapped to ‘+’ strand indicates parental gene on ‘+’ strand
read2 mapped to ‘-‘ strand indicates parental gene on ‘-‘ strand

gene
read

gene

read

+

-

+

-

gene
Read 1

Read2

gene
Read 2

Read1

+

+

-

-



Stranded / directional RNA-seq data
Ø Important to indicate which one was used in some analysis tools

• parameter naming differs in different tools
• You can check this with a RseQC tool

Strandedness: TopHat HISAT2 HTSeq

Read (1) and 
transcript on 
opposite strands

Fr-firststrand --rna-
strandedness
R / RF 

--stranded 
reverse

Read (1) and 
transcript on the 
same strand

Fr-secondstrand --rna-
strandedness
F / FR

--stranded yes

No knowledge 
of where the 
read comes 
from

Fr-unstrand default --stranded no

gene
read

gene

read

++,--

+-, -+



Understanding your data analysis - why?
Ø You know your own experiments best

• Biology involved (e.g. genes, pathways, etc)
• Potential batch effects etc

Ø You can tune the parameters, ”play around” and learn more
about your data
• Bioinformaticians might not always be available when needed

Ø Allows you to design experiments better

• Enough replicates, reads etc à less money wasted

Ø Allows you to discuss more easily with bioinformaticians



RNAseq Alignment



Aligning reads to reference genome

Ø The goal is to find the location where a read originated from
Ø Challenges

• Reads contain genomic variants and sequencing errors
• Genomes contain non-unique sequence and introns

Ø RNA-seq aligner needs to be able to map splice junction spanning
reads to genome non-contiguously 
• Spliced alignments are difficult because sequence signals at splice 

sites are limited, and introns can be thousands of bases long

Modified from Kim et al (2015) Nature methods 12:358



Alignment programs
Ø Many aligners have been developed over the years

• Convert genome fasta file to a data structure which is faster to 
search (e.g. BWT index or suffix array) 

• Differ in speed, memory requirements, accuracy and ability to deal 
with spliced alignments

Ø Use splice-aware aligner for mapping RNA-seq reads
• Examples: 

• STAR (fast and accurate, needs a lot of memory)
• HISAT2 (fast and accurate, creating the genomic index needs a LOT of 

memory)
• TopHat2 (slower, needs less memory)



HISAT2
Ø HISAT = Hierarchical Indexing for Spliced Alignment of Transcripts
Ø Fast spliced aligner with low memory requirement
Ø Reference genome is (BWT FM) indexed for fast searching
Ø Uses two types of indexes

• A global index: used to anchor a read in genome (28 bp is enough)
• Thousands of small local indexes, each covering a genomic region 

of 56 Kbp: used for rapid extension of alignments (good for spliced 
reads with short anchors)

Ø Uses splice site information found during the alignment of earlier 
reads in the same run



HISAT/HISAT2: How it works

Two-step approach 
version of HISAT to 
allow alignment of 
junction reads with 
small anchors.

Kim et al (2015) Nature methods 12:358



HISAT2 alignment: How it works?

• Uses an indexing scheme based on 
the Burrows-Wheelertransform and 
the Ferragina-Manzini (FM) index

• Use global search until exactly one 
match of at least 28bp (slower)

• Extend until mismatch is found 
(faster)

• Switch to local FM index to align 
remaining 8bp

• Extend again after junction  if 
needed

Kim et al (2015) Nature methods 12:358



Use splice site information during read 
mapping to improve alignment accuracy

Kim D et al. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015 
Apr;12(4):357-60.



HISAT2 – Indexing genome
• Use  splice sites and exon junction information 

hisat2_extract_splice_sites.py hg38chr19.gtf > splice_sites.txt
hisat2_extract_exons.py hg38chr19.gtf > exons.txt

• Usage: hisat2-build [options]* <reference_in> <ht2_index_base>

• hisat2-build   – p 2 
--ss splice_sites.txt \
--exon exons.txt \
Homo_sapiens.GRCh38.dna.chromosome.19.fa \
hs_19



HISAT2 – Read alignment
• Usage: hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r> | --

sra-acc <SRA accession number>} [-S <sam>]

• hisat2       - p  2  \
- q     \
-- rna-strandness F    \
- x hisat-indexes/hs_19 \
- U results-trimmomatic/hesc-trimmed.fq.gz \
- S results-hisat/hesc.sam



File format for mapped reads: BAM/SAM

Ø BAM is a compact binary file containing 
aligned reads. 

Ø SAM (Sequence Alignment/Map) contains 
the same information in tab-delimited text. 

BAM header

alignment information: one line per read alignment, 
containing 11 mandatory fields, followed by optional tags



Fields in BAM/SAM files
Ø read name HWI-EAS229_1:2:40:1280:283
Ø flag 272
Ø reference name 1
Ø position 18506
Ø mapping quality 0
Ø CIGAR 49M6183N26M
Ø mate name *
Ø mate position 0
Ø insert size 0
Ø sequence 

AGGGCCGATCTTGGTGCCATCCAGGGGGCCTCTACAAGGAT
AATCTGACCTGCTGAAGATGTCTCCAGAGACCTT

Ø base qualities 
ECC@EEF@EB:EECFEECCCBEEEE;>5;2FBB@FBFEEFCF@F
FFFCEFFFFEE>FFEFC=@A;@>1@6.+5/5

Ø tags MD:Z:75  NH:i:7 AS:i:-8 XS:A:-



Ø Really nice pages for SAM/BAM interpretation: 
http://www.samformat.info



Mapping quality
Ø Confidence in read’s point of origin
Ø Depends on many things, including 

• uniqueness of the aligned region in the genome
• length of alignment
• number of mismatches and gaps

Ø Expressed in Phred scores, like base qualities 
• Q = -10 * log10 (probability that mapping location is wrong)

Ø Values differ in different aligners. E. g. unique mapping is
• 60 in HISAT2
• 255 in STAR
• 50 in TopHat
• https://sequencing.qcfail.com/articles/mapq-values-are-really-useful-

but-their-implementation-is-a-mess/



CIGAR string
Ø M = match or mismatch
Ø I = insertion
Ø D = deletion
Ø N = intron (in RNA-seq read alignments)
Ø S = soft clip (ignore these bases)
Ø H = hard clip (ignore and remove these bases)

Ø Example: 
@HD VN:1.3 SO:coordinate
@SQ SN:ref LN:45
r001  163  ref  7  30  8M2I4M1D3M   =   37   39   TTAGATAAAGGATACTG   *

• The corresponding alignment
Ref  AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
r001       TTAGATAAAGGATA*CTG



Flag field in BAM
Ø Read’s flag number is a sum of values

• E.g. 4 = unmapped, 1024 = duplicate
• Explained in detail at http://samtools.github.io/hts-specs/SAMv1.pdf
• You can interpret them at 

http://broadinstitute.github.io/picard/explain-flags.html



How did the alignment go? Check the log file
Ø How many reads mapped to the reference? 

• How many of them mapped uniquely? 
Ø How many pairs mapped? 

• How many pairs mapped concordantly?
Ø What was the overall alignment rate?



Ø Aligning reads to reference genome is slow à many quantitation
tools offer now lightweight ”mapping” 
• selective alignment (Salmon)
• quasi-mapping (Sailfish, Salmon)
• pseudoalignment (kallisto)

Ø These tools match reads to transcripts and report transcripts that 
a read is compatible with (no base-to-base alignments)
• Difficult to assign reads to isoforms because they share exons, and 

technical biases cause non-uniform coverage
• Need complete transcriptome

Ø Srivastava et al 2019: Alignment and mapping methodology
influence transcript abundance estimation
• Quantification accuracy is better when using traditional alignments

Full alignment or lightweight mapping? 



Alignment Practicals

Ø Make an index file for HISAT2
Ø Align reads to reference genome with HISAT2



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis



Alignment level quality control



Annotation-based quality metrics

Ø Saturation of sequencing depth
• Would more sequencing detect more genes and splice junctions?

Ø Read distribution between different genomic features
• Exonic, intronic, intergenic regions
• Coding, 3’ and 5’ UTR exons
• Protein coding genes, pseudogenes, rRNA, miRNA, etc

Ø Is read coverage uniform along transcripts?
• Biases introduced in library construction and sequencing

• polyA capture and polyT priming can cause 3’ bias
• random primers can cause sequence-specific bias
• GC-rich and GC-poor regions can be under-sampled

• Genomic regions have different mappabilities (uniqueness)



Ø Checks coverage uniformity, saturation of sequencing depth, 
novelty of splice junctions, read distribution between different 
genomic regions, etc.

Ø Takes a BAM file and a BED file
Ø Remember to check that the chromosome names match (chr1 vs 1)

Quality assessment with RseQC



BED file format
Ø BED (Browser extensible data) file format is used for reporting 

location of features (e.g. genes and exons) in a genome

Ø 5 obligatory columns: chr, start, end, name, score

Ø You can get a BED file with gene locations from UCSC Table 

Browser: https://genome.ucsc.edu/cgi-bin/hgTables

Ø Example of a BED file (with known junctions):



QC tables by RseQC
(alignment, actually…)

Default=30

Read A

Reference

Read A Read A

Total records:          7
Non primary hits:    4
Total reads:               3
Total tags: 8

Read B Read B
Read CRead A



Splicing graphs by RseQC

Ø Splicing junction = exon-exon junction covered by one or more reads
Ø Splicing event = a read is split across a splice junction



Visualisation: IGV Genomics Viewer



Visualisation: IGV Genomic Viewer
Ø You can view your BAM files in IGV Genomic Viewer

1. Browse to https://igv.org/app/
2. Upload your .bam and .bai files
3. Go to known location, zoom in and out

Ø What can you see?
• Reads/alignments
• SNPs
• Troubleshooting: your favorite gene should be expressed, 

but it is not counted by HTSeq. Are there any reads 
aligning to this location? 

• (If yes, the reason might be that they are aligning to other locations 
as well -non-unique- and thus not counted by HTSeq)



Visualisation: IGV Genomic Viewer



Ø The majority of RNA in cells is rRNA
Ø Typically we want to sequence protein coding genes, so we try to 

avoid rRNA
• polyA capture
• Ribominus kit (may not work consistently between samples)

Ø How to check if we managed to avoid rRNA?
• RseQC might not be able to tell, if the rRNA genes are not in the 

BED file (e.g. in human the rRNA gene repeating unit has not been 
assigned to any chromosome yet)

• You can map the reads to human ribosomal DNA repeating unit 
sequence (instead of the genome) with the Bowtie aligner, and 
check the alignment percentage

Did I accidentally sequence ribosomal RNA? 



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Describing the experiment with phenodata
Ø Experiment level quality control
Ø Differential expression analysis



RNAseq quantification



Software for counting reads per genes or
transcripts

Ø HTSeq

Ø StringTie
Ø Cufflinks

Ø Salmon
Ø Kallisto
Ø …



Counting reads per genes with HTSeq

Ø Given a BAM file and a GTF file with gene locations, counts how 
many reads map to each gene.
• A gene is considered as the union of all its exons. 
• Reads can be counted also per exons. 

Ø Use again Ensembl GTF files (or similar)
• Note that GTF and BAM must use the same chromosome naming
• All exons of a gene must have the same gene_id (avoid UCSC GTFs)

Ø Multimapping reads and ambiguous reads are not counted

Ø 3 modes to handle reads which overlap several genes
• Union (default), Intersection-strict, Intersection-nonempty

Ø Attention: was your data made with stranded protocol?

• You need to select the right counting mode!



Estimating gene expression at gene level

Trapnell et al. Nature Biotechnology 2013



Not unique or ambiguous?

Ambiguous

Stranded data
à Not ambiguous

Multimapping
(not unique)

read A read A

read

read



HTSeq count modes



GTF file format

Ø 9 obligatory columns: chr, source, name, start, end, score, strand, 
frame, attribute

Ø 1-based
Ø For HTSeq to work, all exons of a gene must have the same gene_id

• Use GTFs from Ensembl, avoid UCSC



HTSeq – Read counts per gene
• Usage: htseq-count [options] alignment_file gff_file

• htseq-count --format=bam \
--stranded=yes     \
--mode=union     \
--type=exon   \
--idattr=gene_id \
results-hisat/hesc_sorted.bam \
hisat-indexes/hg38chr19.gtf



HTSeq result files: counts and info



Isoform switching can confound DGE analysis
Ø The number of reads obtained from an expressed gene depends on 

the transcript length
• Longer transcripts produce more fragments and hence more reads

Ø If a gene switches from one transcript isoform to another one, this 
can confound DGE analysis

Gene A

Transcript 1 (length L)

Transcript 2 (length 2L)

Control sample Cancer sample

Expression level of gene A is the same in both samples, but
cancer cells express the shorter isoform



Isoform switching can confound DGE analysis
Ø The number of reads obtained from an expressed gene depends on 

the transcript length
• Longer transcripts produce more fragments and hence more reads

Ø If a gene switches from one transcript isoform to another one, this 
can confound DGE analysis

Gene A

Transcript 1 (length L)

Transcript 2 (length 2L)

Control sample Cancer sample

We get twice as many reads from the control sample
à is gene A downregulated in cancer?  



Should we quantitate at transcript level? 
Ø Gene-level quantitation is more accurate than transcript-level

• Technical biases cause non-uniform coverage à difficult to assign 
reads to different isoforms

• High variation in abundance estimates of lowly expressed transcripts

Ø BUT we can improve gene-level analysis by adjusting counts to 
reflect the underlying isoform composition!



GTF file format

Ø 9 obligatory columns: chr, source, name, start, end, score, strand, 
frame, attribute

Ø 1-based
Ø For HTSeq to work, all exons of a gene must have the same gene_id

• Use GTFs from Ensembl, avoid UCSC



Is isoform switching a major problem?

Ø The magnitude of the effect depends on 
• the extent of differential transcript usage (DTU)
• the difference in length between the differentially expressed isoforms.

• If the longer isoform is < 34% longer, false positives are controlled ok 
• Among all human transcript pairs in which both transcripts belong to the same 

gene, the median length ratio is 1.85
• For one third of such pairs the longer isoform is < 38% longer

Ø Many human genes express mainly one, dominant isoform
• à the global impact of isoform switching is relatively small in many 

real datasets (as opposed to simulated ones)

Soneson et al. F1000 Research 2016



Combine individual count files into a count table
Ø Combine the count files into one file
Ø We use a separate file for describing the experimental setup 

Read table 
(TSV, table) phenodata

Read 
counts 
(TSV, table)

Read 
counts 
(TSV, table)

Read 
counts 
(TSV, table)

Read 
counts 
(TSV, table)

Read 
counts 
(TSV, table)

Read 
counts 
(TSV, table)
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Description 
of the samples:



Describe the experiment (phenodata file)

Ø Describe experimental groups, time, pairing etc with numbers
• e.g. 1 = control, 2 = cancer

Ø Define sample names for visualizations



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Describing the experiment with phenodata
Ø Experiment level quality control
Ø Differential expression analysis
Ø Visualization of reads and results in genomic context



Moving to R
Ø So far we have used command line tools
Ø Now, we move the data to R and start using Bioconductor 

packages
• RStudio is installed in the VM used in the course
• You can install R+RStudio on your own computer
• …or use them in Puhti

Ø The data is now MUCH smaller 
• Instead of multiple sizable FASTQ and BAM files, we now 

have one table of gene counts
• In our exercises, we now switch to a different dataset with 10 

full-sized samples
Ø It might be that you are starting the analysis at this point 

only 



R, RStudio & Bioconductor

Ø R: free software environment for statistical 
computing and graphics
• https://www.r-project.org

Ø RStudio: open source software for the R 
statistical computing environment –a GUI of 
sorts
• https://rstudio.com

Ø Bioconductor: tools (“R packages”) for the 
analysis of high-throughput genomic data. 
Open source and open development.
• We are using: DESeq2 and edgeR

packages
• https://www.bioconductor.org



Tiny recap of R

Visualisations,
files, packages…

Your variables
Your script: 
this is where 
you store 
your 
commands 
and notes!

The console:
the 
commands 
go here



First…

Ø Clean & format the data (examples given)
Ø (Install &) open the needed packages 

library(DESeq2)

Ø Set the working directory to the folder where the data is
Ø Import the data 

data <-read.table(“my_data_table.tsv”)



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis
Ø Visualization of reads and results in genomic context



Experiment level quality control

Ø Getting an overview of similarities and dissimilarities
between samples allows you to check
• Do the experimental groups separate from each other?
• Is there a confounding factor (e.g. batch effect) that should be

taken into account in the statistical analysis?
• Are there sample outliers that should be removed?

Ø To check this, we use PCA plot



Dimension reduction / PCA
Ø PCA = Principal Component 

Analysis 
Ø finds the principal 

components of data
Ø PCs

• = the directions where there 
is the most variance 

• = the directions where the 
data is most spread out

Ø Why we use PCA here?
• By reducing the dimensions 

the data can be visualized

In our case instead of X and Y: 
gene1, gene2, gene3… gene1838
= MANY dimensions!



What are we looking for?
Ø Do the experimental groups separate from each other?
Ø Is there a confounding factor (e.g. batch effect) ?

• If the 2nd component explains only little variance, it can ignored
Ø Outliers?
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PCA plot by DESeq2

Ø The first two principal
components, calculated
after variance stabilizing
transformation

Ø Indicates the proportion 
of variance explained by
each component
• If PC2 explains only a 

small percentage of  
variance, it can be 
ignored



MDS plot by edgeR

Ø Distances correspond to the logFC or biological coefficient of 
variation (BCV) between each pair of samples

Ø Calculated using 500 most 
heterogenous genes (that have 
largest dispersion when treating 
all samples as one group)



Sample heatmap by DESeq2

Ø Euclidean distances between the samples, calculated after
variance stabilizing transformation



Data analysis workflow
Ø Quality control of raw reads
Ø Preprocessing (trimming / filtering) if needed
Ø Alignment to reference genome
Ø Alignment level quality control
Ø Quantitation
Ø Experiment level quality control
Ø Differential expression analysis
Ø Visualization of reads and results in genomic context



Differential expression analysis 
in RNA-seq



Differential expression analysis in RNA-seq
Ø How differently is gene A expressed in treatment vs controls?

• Basic t-statistic: how far from each other are the means of the 
two groups? (In terms of deviance/variation/dispersion)

Not quite as simple as that…
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Differential expression analysis in RNA-seq

Ø How differently is gene C expressed in treatment vs controls?

• Basic t-statistic: how far from each other are the means of the 
two groups? (In terms of deviance/variation/dispersion)

T1 T2 T3 C1 C2 C3

Gene A 1 0 1 6 7 5

Gene B 9 8 10 2 4 2

Gene C 10 12 11 7 20 16 ???

Not quite as simple as that…



Software packages for DE analysis

Ø edgeR

Ø DESeq2

Ø Sleuth

Ø DRIMSeq

Ø DEXSeq

Ø Cuffdiff, Ballgown

Ø Limma + voom, limma + vst

Ø ...



Differential gene expression analysis
Ø Normalization

Ø Dispersion estimation

Ø Log fold change estimation

Ø Statistical testing

Ø Filtering

Ø Multiple testing correction



Differential expression analysis:
Normalization



Normalization
Ø For comparing gene expression between (groups of) samples, 

normalize for

• Library size (number of reads obtained)

• RNA composition effect

Ø The number of reads for a gene is also affected by transcript 

length and GC content

• When studying differential gene expression we assume that they 

stay the same



Metrics for quantifying gene expression levels

Ø RPKM
• Reads Per Kilobase per Million mapped reads
• Normalize relative to sequencing depth and gene length

Ø FPKM
• Similar to RPKM but count DNA fragments instead of reads
• Used in paired end RNA-Seq experiments to avoid bias

Ø TPM
• Transcripts Per Million
• Normalize for gene length, then normalize by sequencing depth

Wagner GP et al. Measurement of mRNA abundance using RNA-Seq data: RPKM measure is 
inconsistent among samples. Theory Biosci. 2012 Dec;131(4):281-5.



Gene
Control 
Counts

Treatment 
Counts

Control 
Normalize
d

Treatment 
Normalized

G1 2.00 6.00 0.20 0.06
G2 2.00 6.00 0.20 0.06
G3 2.00 6.00 0.20 0.06
G4 2.00 6.00 0.20 0.06
FG 2.00 76. 00 0.20 0.76

Gene
Control 
Counts

Treatment 
Counts

Control 
Normalize
d

Treatment 
Normalize
d

G1 2.00 6.00 0.25 0.25
G2 2.00 6.00 0.25 0.25
G3 2.00 6.00 0.25 0.25
G4 2.00 6.00 0.25 0.25
FG 2.00 76.00.00 0.25 3.17

https://haroldpimentel.wordpress.com/2014/12/08/in-rna-seq-2-2-between-sample-normalization/

Consideration for the between sample normalisation

(-FG)



Ø “FPKM and TC are ineffective and should be definitely 
abandoned in the context of differential analysis”

Ø “In the presence of high count genes, only DESeq and 
TMM (edgeR) are able to maintain a reasonable false 
positive rate without any loss of power”



Dillies et. Al A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data 
analysis,  Briefings in Bioinformatics, Volume 14, Issue 6, November 2013, Pages 671–683, https://doi.org/10.1093/bib/bbs046

Which normalisation method to use?



Normalization by edgeR and DESeq
Ø Aim to make normalized counts for non-differentially 

expressed genes similar between samples

• Do not aim to adjust count distributions between samples

Ø Assume that

• Most genes are not differentially expressed

• Differentially expressed genes are divided equally between 

up- and down-regulation

Ø Do not transform data, but use normalization factors within 

statistical testing



Normalization by edgeR and DESeq – how?
Ø DESeq(2)

• Take geometric mean of gene’s counts across all samples
• Divide gene’s counts in a sample by the geometric mean
• Take median of these ratios à sample’s normalization factor 

(applied to read counts)

Ø edgeR
• Select as reference the sample whose upper quartile is closest to 

the mean upper quartile
• Log ratio of gene’s counts in sample vs reference à M value
• Take weighted trimmed mean of M-values (TMM) à normalization 

factor (applied to library sizes)
• Trim: Exclude genes with high counts or large differences in expression
• Weights are from the delta method on binomial data



Library size factor estimation in DESeq2

RC of gene 1
RC of gene 2
RC of gene 3
RC of gene 4

.

.

.

RC of gene 1.   …
RC of gene 2.   …
RC of gene 3.   …
RC of gene 4.   ….

.

.

.

GM of gene 1
GM of gene 2
GM of gene 3
GM of gene 4

.

.

.

÷
÷
÷
÷

[median_col1, median_col2, …]

Median value of each sample serves as scaling factor for that sample

Geometric mean (GM) is across all samples of respective gene read counts (RC)
and then median value is obtained for  each sample across ratios of all genes



Source: https://slideplayer.com/slide/7647573/



edgeR and DESeq2 expect raw read counts

Ø Raw counts are needed to assess the quantification uncertainty
Ø Uncertainty information is lost if counts are transformed to FPKM

• FPKM = fragments per kilobase per million mapped reads.
• Normalizes for gene length and library size. Example: 

• 20 kb transcript has 400 counts, library size is 20 million reads: FPKM = (400/20) / 
20

• 0.5 kb transcript has 10 counts, library size is 20 million reads: FPKM = (10/0.5) / 
20

• à in both cases FPKM =1, but it is less likely to get 400 reads just by chance

Ø The negative binomial assumption of edgeR and DESeq2 is flexible 
enough to deal with gene-level counts summarized from Salmon’s 
transcript-level abundance estimates



Differential expression analysis:
Dispersion estimation



Dispersion

Ø When comparing gene’s expression levels between groups, it 
is important to know also its within-group variability

Ø Dispersion = (BCV)2

• BCV = gene’s biological coefficient of variation
• E.g. if gene’s expression typically differs from replicate to 

replicate by 20% (so BCV = 0.2), then this gene’s dispersion is 
0.22 = 0.04

Ø Note that the variability seen in counts is a sum of 2 things:
• Sample-to-sample variation (dispersion)
• Uncertainty in measuring expression by counting reads



How to estimate dispersion reliably?

Ø We cannot typically afford tens or hundreds of biological 
replicates 

à it is difficult to estimate within-group variability

Ø Solution: pool information across genes which are expressed 
at similar level
• assumes that genes of similar average expression strength have 

similar dispersion

Ø Different approaches
• edgeR
• DESeq2



Dispersion estimation by DESeq2
Ø Estimates genewise dispersions using maximum likelihood
Ø Fits a curve to capture the dependence of these estimates on 

the average expression strength
Ø Shrinks genewise values towards the curve using an empirical 

Bayes approach 

• The amount of shrinkage 
depends on several things 
including sample size

• Genes with high gene-wise 
dispersion estimates are 
dispersion outliers (blue 
circles above the cloud) and 
they are not shrunk



Shrinkage estimation

Population distribution (unobserved)

Empirical distribution

Shrunken estimates (or MAP)

Gene sample variance



Differential expression analysis:
Statistical testing



Generalized linear models
Ø Model the expression of each gene as a linear combination of 

explanatory factors (eg. group, time, patient)

• y = a + (b . group) + (c . time) + (d . patient) + e
y = gene’s expression
a, b, c and d = parameters estimated from the data
a = intercept (expression when factors are at reference level)
e = error term

Ø Generalized linear model (GLM) allows the expression value 

distribution to be different from normal distribution

• Negative binomial distribution used for count data



DESeq2 design = ~ sex+ experiment

Sex

M
M
F
M
F
F

Experiment

Treatment
Control
Treatment
Control
Treatment
Control

1  
1
1
1
1
1

1  
1
0
1
0
0

1  
0
1
0
1
0

=

log2µ1
log2µ2
log2µ3
log2µ4
log2µ5
log2µ6

β intercept
β sex_female_vs_male
β experiment_Ctr_vs_treat

Example of DESeq2 design matrix



Statistical Distributions
gaussian, poisson, negative binomial    -- what does all this mean?

• RNA-seq data fits a Negative Binomial (NB) distribution. 
• But really, that’s just saying that RNAseq looks like “counts” data with 

more variation than just statistical fluctuations– it also has biological 
variation in it.

• How do we know?  Because, when you measure variance (per gene, 
between replicates), it’s not equal to the mean, and it’s not even a good 
linear fit

poisson
negative binomial fit

* For real data, even the NB fit 
isn’t always great

Anders & Huber, Genome Biology 2010

M. Hammell



Statistical testing
Ø edgeR

• Two group comparisons
• Exact test for negative binomial distribution.

• Multifactor experiments
• Generalized linear model, likelyhood ratio test. 

Ø DESeq2
• Shrinks log fold change estimates toward zero using an 

empirical Bayes method
• Shrinkage is stronger when counts are low, dispersion is high, or there

are only a few samples

• Generalized linear model, Wald test for significance
• Shrunken estimate of log fold change is divided by its standard error and 

the resulting z statistic is compared to a standard normal distribution



Multiple testing correction

Ø We tests thousands of genes, so it is possible that some
genes get good p-values just by chance
• This problem is much bigger, if you test transcripts (DTE)

Ø To control this problem of false positives, p-values need to be
corrected for multiple testing

Ø Several methods are available, the most popular one is the
Benjamini-Hochberg correction (BH)

Ø The adjusted p-value is FDR (false discovery rate)



Filtering
Ø Reduces the severity of multiple testing correction by

removing some genes (makes n smaller)

Ø Filter out genes which have little chance of showing
evidence for significant differential expression
• genes which are not expressed
• genes which are expressed at very low level (low counts are

unreliable)

Ø Should be independent
• do not use information on what group the sample belongs to

Ø DESeq2 selects filtering threshold automatically



Summary of differential expression analysis
Ø Means of the raw counts within groups can’t be compared

• Because library size varies & the RNA composition effect messes things up
à NORMALIZATION 

• Expression values don’t follow normal distribution
à GLM, NEGATIVE BINOMIAL DISTRIBUTION

Ø Direct (gene-wise) estimation of dispersion is not good
• Because there are too few replicates

à POOL DISPERSION INFORMATION ACROSS GENES

Ø We are doing many comparisons
à MULTIPLE TESTING CORRECTION, FDR



edgeR result table

Ø logFC = log2 fold change
Ø logCPM = average log2 counts per million
Ø Pvalue = raw p-value
Ø FDR = false discovery rate (Benjamini-Hochberg adjusted p-

value)



DESeq2 result table
Ø baseMean = mean of counts (divided by size factors) taken 

over all samples
Ø log2FoldChange = log2 of the ratio meanB/meanA
Ø lfcSE = standard error of log2 fold change
Ø stat = Wald statistic
Ø pvalue = raw p-value
Ø padj = Benjamini-Hochberg adjusted p-value



Analyzing differential gene expression:
things to take into account
Ø Biological replicates are important!

Ø Normalization is required in order to compare expression

between samples

• Different library sizes

• RNA composition bias caused by sampling approach

Ø Raw counts are needed to assess measurement precision

• Counts are the ”the units of evidence” for expression

• Gene-level counts summarized from Salmon’s transcript-level

estimates seem to be ok

Ø Multiple testing problem



Annotations
Ø We want to annotate our Ensembl identifiers with gene 

names + descriptions:
• ENSG00000122852 -> “SFTPA1”, “surfactant protein A1”

Ø biomaRt tools allows to make queries to databases like 
Ensembl
1. Select database & dataset to use

ensembl <- useMart("ensembl", 
dataset="hsapiens_gene_ensembl")

2. Query: 
• attributes = what we retrieve
• filters = restrictions for the query
• values = values for the filter
genes_ensembl_org <- getBM(attributes <-
c("ensembl_gene_id", "external_gene_name", 
"description"), filters = "ensembl_gene_id", values = 
genes, mart = ensembl)

• List functions help to select: ListMarts, ListDatasets, 
ListAttributes…



Enrichment Analysis analysis



A key challenge in omics’ studies: 
how to move from expression changes to biological functions

Ø Are there any specific biological functions that are 
characterized by gene expression changes?

?!

RNAseq data



Enrichment Analysis in General
Ø A genome-wide application tool

Ø Results are taken as indicative rather than conclusive

Ø Often done as secondary analysis to get high level 
understanding of biology

Ø Related names for this analysis: Functional interpretation 
analysis; GSEA, GSA, Pathway analysis



Mainly two types of enrichment analysis

UP

DOWN

ENRICHMENT
TEST

Threshold-
dependent

e.g.	
Fisher’s	
Test

Whole-
distribution

e.g.	GSEA

UP

DOWN



Overrepresentation analysis 
(= Threshold based analysis)



Enrichment Analysis: Introduction
Ø Break down cellular function into gene sets

- Every set of genes is associated to a specific cellular function, 
process, component or pathway

Gene set = 
Predefined set of genes 
which are grouped by their 
gene function, pathway 
membership, etc. 

Image source: https://github.com/hbctraining/DGE_workshop



Hypergeometric testing of gene sets
• m is the total number of genes 
• j is the number of genes are in the functional category
• n is the number of differentially expressed genes 
• k is the number of differentially expressed genes in the 

category



Enrichment Test

Significant	genes Overlap	between
significant	genes	
and	gene-set

Background	set

Is this overlap larger than expected by random sampling 
the array genes?

Statistical Model:
Fisher’s Exact Test



How do we perform the gene set testing?

• Find a set of differentially expressed genes (DEGs)

• Are DEGs in a set more common than DEGs not in a set?

• Fisher test stats::fisher.test()

• Conditional hypergeometric test, to account for directed 
hierachy of GO GOstats::hyperGTest()



Fisher's exact test based methods are not 
optimal
Ø The outcome of the overrepresentation test depends on the 

significance threshold used to declare genes differentially 
expressed
• cut-off is always somewhat arbitrary

Ø Functional categories in which many genes exhibit small 
changes may go undetected.

Ø Genes are not independent, so a key assumption of the 
Fisher’s exact tests is violated.

Ø Relative strength of DE changes is ignored



Enrichment Analysis: Introduction

Ø Main rationale – functionally related genes often display a 
coordinated expression to accomplish their roles in the cells

Ø Aims to identify gene sets even with "subtle but coordinated" 
expression changes that would be missed by DEGs threshold 
selection

Ø Gene Set Enrichment Analysis - Statistical methods 
determine significance of enrichment for gene set by 
comparing distribution of genes in set to ‘background 
distribution’



GSEA: Gene set enrichment analysis

Ø The null hypothesis is that the rank ordering of the genes in a 
given comparison is random with regard to the case-control 
assignment.

Ø The alternative hypothesis is that the rank ordering of genes 
sharing functional/pathway membership is associated with 
the case-control assignment.



GSEA: Gene set enrichment analysis
1. Sort genes by log fold change
2. Calculate running sum - increment when gene in a set, 

decrement when not
3. Maximum of the runnig sum is the enrichment score - larger 

means genes in a set are toward top of the sorted list
4. Permute subject labels to calculate significance p-value

Subramanian, Tamayo, et al. (2005, PNAS 102, 15545-15550)
Mootha, Lindgren, et al. (2003, Nat Genet 34, 267-273).



Advantages of using GSEA
Ø Agnostic to the type of gene set and the source of annotation

Ø Operates on any ordered gene list 

Ø Does not require the choice of a gene selection threshold or the 
explicit definition of a statistically significant marker set 

Ø Uses distribution-free, non-parametric, permutation-based test 
procedures with increased statistical power

Ø Incorporates the permutation of phenotype labels thereby 
preserving the “biological” correlation structure of the markers 

Ø Takes into account multiple hypotheses testing of multiple gene 
sets

Ø Less prone to false-positives than on the gene-level



Many GO enrichment tools

Ø GOStat, http://gostat.wehi.edu.au/
Ø GOrilla, Gene Ontology enRIchment anaLysis and 

visuaLizAtion tool http://cbl-
gorilla.cs.technion.ac.il/

Ø g:Profiler, http://biit.cs.ut.ee/gprofiler/
Ø Metascape, http://metascape.org/
Ø ToppGene, https://toppgene.cchmc.org/
Ø WebGestalt - WEB-based GEne SeT AnaLysis

Toolkit, http://www.webgestalt.org/
Ø R packages, clusterProfiler, 

https://www.bioconductor.org/packages/devel/bio
c/html/clusterProfiler.html



Analysing effectively

Parallel scripts in Puhti



Analysing effectively: let the script do the 
work for you
Ø The steps learned today are repeated to all the samples 

in your dataset
• You don’t want to type the same commands several 

times, and risk making mistakes between samples
Ø Some analysis steps take hours to complete (alignment, 

read counting)
• Bit boring to just wait

Ø Thus: first test, then automate = write a (batch) script!
• At CSC, you can then run the analysis effectively on our 

supercomputer Puhti
• Parallelization



Puhti 101
Ø Login with your username:

ssh <csc_username>@puhti.csc.fi

Ø Move to your projects SCRATCH directory
• SCRATCH directories are shared for the project

• Make your own folder there!

• Don’t run analysis on your HOME directory or in the login 
node

Ø We are running the same tools for several samples
• = “awkwardly parallel” task => “array job”
• Write a batch script (rnaseq_array_job_script.sh)

sbatch rnaseq_array_job_script.sh
squeue -l -u your_username

Ø Modules: pre-installed tools are loaded in use with module
command

module load biokit

Ø Store data in Allas! (SCRATCH is cleaned)
cd /scratch/project_xxxxxxx

mkdir rnaseq_test_yourname



Array script
Ø https://docs.csc.fi/computing/running/array-jobs/

#!/bin/bash -l
#SBATCH --job-name=array_job
#SBATCH --output=array_job_out_%A_%a.txt
#SBATCH --error=array_job_err_%A_%a.txt
#SBATCH --account=<project>
#SBATCH --partition=small
#SBATCH --time=02:00:00
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=4000
#SBATCH –cpus-per-task=2
#SBATCH --array=1-50

# run the analysis command
my_prog data_${SLURM_ARRAY_TASK_ID}.inp data_${SLURM_ARRAY_TASK_ID}.out



Design of experiments



When planning an experiment, consider

Ø The number of biological replicates needed. Depends on
• Biological variability and technical noise
• Expression level, fold change and sequencing depth

Ø Sample pairing
Ø Sequencing decisions

• Number of reads per sample (~sequencing depth)
• Read length (longer is better)
• Paired end or single end (PE is better)
• Stranded or unstranded (stranded is better)
• Batch effects



Relevant concepts 
Ø Read depth = coverage 

= how many reads per each nucleotide,
on average? 

• It depends… 30X – 300X ?
• With RNASeq we count 

reads per sample. 20-200 M ?

• Read length? 75-300 bp?

• Paired end, single end?

• Sequencing capacity = how many cycles, how many reads per flow cell, 
how many lanes in the flow cell? => depends on the device.

• Heterogeneity of the sample material (cell line vs. tumor sample)

https://genohub.com/recommended-sequencing-coverage-by-application/



Coverage
Ø Whole Genome Sequencing (WGS): 

• Genotype calls 35x, INDELs 60x, SNVs 30x 
Ø RNASeq:

• Differential expression profiling 10-25 M reads, allele specific 
expression 50-100 M

• Alternative splicing 50-100 M
• De novo assembly >100 M

Ø ChiP-Seq: 10-15 M (sharp peaks), 20-40 M (broad)

https://genohub.com/recommended-sequencing-coverage-by-application/



Relevant concepts 
• Read length = max. number of cycles
• Reads per flow cell
• Lanes per flow cell
• Multiplexing
• Paired end option
• Targeted sequencing = sequencing panels

The device

• Requirement for coverage / read depth
• SNP, indels, de novo assembly, variant 

discovery, novel mutation discovery, 
expression analysis…

• Mitochondria? Highly expressing genes 
active?

The question

The sample • Tumor sample, blood sample, model 
organism, cell line…

• Possible contaminations?
• How many samples available?

Time, money, experience, availability?



Technical vs. biological replicates

Ø Biological replicates are separate individuals/samples
• Necessary for a properly controlled experiment

Ø Technical replicates are repeated sequencing runs using
the same RNA isolate or sample
• Waste of resources?
• Can cause unnecessary variance reduction à increases

number of false positives

Ø Avoid mixing of biological and technical replicates!



Technical vs. biological replicates

Distinction between technical and biological replicates is
fuzzy.

Where do we stand with cell lines?



Replicate number
Ø Publication quality data needs at least 3 biological 

replicates per sample group. 
• This can be sufficient for cell-cultures and/or test animals

Ø More reasonable numbers:
• Cell cultures / test animals: 3 is minimum, 4-5 OK, >7 excellent
• Patients: 3 is minimum, 10-20 OK, >50 good
• Power analysis can be used to estimate sample sizes



How many reads per sample do I need?
Ø Depends on the transcriptome and what you want to investigate

• https://genohub.com/recommended-sequencing-coverage-by-application/
• Differential expression 10-25 M reads 
• Allele specific expression 50-100 M
• Alternative splicing 50-100 M
• De novo assembly >100 M

Ø More reads or more replicates?



Read depth / number of reads per sample

Ø Some recommendations available
Ø Heterogeneous sample => more depth needed

• For example tumor samples or when there is a 
doubt of contamination

Ø RNASeq: some highly expressed transcript may 
hoard all the resources

Ø Targeted panels: how well are they targeting
Ø More depth or more replicates?



Balance sample groups across batches
Ø You can’t account for a batch effect if all your control samples 

were run in one batch and the drug samples in the other
• DESeq2 would give an error: ”The model matrix is not full rank”

Ø Balance sample groups cross batches

sample batch treatment

1 1 control

2 1 control

3 1 control

4 1 control

5 2 drug

6 2 drug

7 2 drug

8 2 drug

sample batch treatment

1 1 control

2 1 control

5 1 drug

6 1 drug

3 2 control

4 2 control

7 2 drug

8 2 drug

Problem: You have 8 samples, 4 controls and 4 treated samples. You can only fit 4 samples in one 
sequencing run, which means you will have 2 batches. How would you form the batches?

Option A: Option B:



Paired samples
Ø Use of matched samples reduces variance, as individual

variation can be tackled using a matched control
• Pre vs. post treatment samples
• Tumor vs. normal samples from the same patient

Pre treatment
samples

Post treatment
samples

P1    P2     P3    P4    P5     P6 

VS

P1    P2    P3     P4    P5     P6 

P1    P2     P3    P4    P5     P6 

P1    P2    P3     P4    P5     P6 

Problem: 6 patients, 2 samples from each. Enough resources to sequence only 6 samples. 
Which option do you choose?

Option A: Option B:



Pooling
Ø When possible, measure each sample on its own.

• If this is not possible (too expensive or not enough material),
samples can be pooled to reduce variance

• Risk: If some of the samples are outliers, the pool is unusable
Ø Make pools as similar as possible

Cell culture:       1       2       3      4       5       6       7       8       9



Pooling
Ø Make pools as similar as possible
Ø Avoid pooling of similar kinds of samples into

one pool

VS

F      F     F      M     M     M     F      F      F F      M     F      F      M      F      F      F      M

Option A: Option B:

Problem: We have 9 control samples, but we need to pool 3 samples together. 
6 samples are from females and 3 from males.



Pooling
Something to consider:
What if some of your samples are outliers, or have a
contamination?

Cell culture:       1       2       3      4       5       6       7       8       9



Reference samples

Ø Don’t compare apples to oranges!
• Cancer sample vs. normal sample –where do 

you get the “normal sample”?
• Same tissue, “healthy” parts from the same 

patient? 
• Same, healthy tissue from another patient? 
• Similar tissue from the same patient? 
• Blood sample from the same patient? 
• Cell line?



Getting started at CSC + other materials



Getting started at CSC
Ø Overview and links to manual pages: 

https://research.csc.fi/accounts-and-projects

Ø Step 1. Create a user account
• Create a CSC account by logging in CSC's customer portal MyCSC

with Haka or Virtu.
Ø Step 2. Create or join a project

• to access Puhti, Mahti, Allas, cPouta, ePouta, Rahti, Kaivos and/or 
IDA.

• A) Create a CSC project to access and invite users
• B) Ask project manager to invite you

Ø Step 3. Add service access for your project
• Only the project manager can add services.

Ø Step 4. Apply for more resources/billing units, if needed
Ø Step 5. Renew your password annually



https://research.csc.fi/bioscience-learning-materials

Ø Check:



Chipster: Easy-to-use high-throughput data 
analysis tool

chipster.csc.fi chipster@csc.fi



Recent advances: single-cell RNAseq



New directions: single cell RNA-seq

Ø (BulkI RNA-seq is very much in use, but scRNA-seq
technology is warmly welcomed in many areas

Ø With scRNA-seq, cellular heterogeneity can be studied

https://www.biocompare.com/Bench-Tips/345311-Single-Cell-Set-Up-Sample-Preparation-Tips/



Different	technologies	for	capturing	single-
cell	transcriptomes

10X

Encapsulation	of	cells RNA	capture

Barcoded	single-cell	
transcriptomes

Cells

Oil
Barcoded	RNA	capture	
beads

Library	prep	and	
sequencing

Indrop

Drop-Seq

Seq-Well

Slide by Heli Pessa

-millions of the same
cell barcode per bead
-48 different molecular
barcodes (=UMIs) 
per bead



https://hemberg-lab.github.io/scRNA.seq.course/introduction-to-single-cell-rna-seq.html



RNAseq vs scRNAseq data
Sample 1 Sample 2 Sample 

3
Control 
1

Control 
2

Control 
3

Gene A 5 4 7 24 23 22

Gene B 50 54 52 12 12 11

Gene C 5 4 5 4 4 5

Gene D 33 34 32 21 32 43

…

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 …

Gene A 20 14 7 3 0 15

Gene B 0 4 0 1 2 0

Gene C 5 4 5 4 4 5

Gene D 1 3 32 21 32 43

…

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 ...

Gene A 5 0 2 0 1 0

Gene B 50 51 52 12 12 11

Gene C 5 0 5 0 0 1

Gene D 0 1 2 0 7 0

…

RNAseq: 
• 1 table, genes x samples
• Compare sample groups

scRNAseq: 
• Tables = samples
• Genes x cells ( -> very wide tables)
• Lots of zeros
• Find clusters of similar cells in samples
• Compare clusters



Feedback

Ø We would very much value your feedback!
• You will receive a course feedback link to your e-mail


