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Welcome!
Some practical matters:

» Keycard
* Please keep it with you at all times
* Lunch ticket

* QR reader on the door —knowing this, you can leave your
belongings in the classroom at your own risk

» Parking
* You need to get a permission from Info desk
» Schedule
* Is on the course webpage —not set in stone ©
» GDPR!
« Careful when using the classroom computers
» Foods & drinks
 We don’t allow those in the classroom —water bottles ok ©
» Coffee/tea breaks in the training lobby
* Lunch at the two restaurants in this building CSC



Schedule (draft)

» Thursday 6.2.

e 9:00 First session:
Welcome &
Introductions

* 10:00 Coffee break

 10:30 Second session:

Quality control and
preprocessing

e 12:00 Lunch

 13:00 Third session:
Alignment

 14:30 Coffee break

* 15:00 Fourth session:
Quantitation,
Experimental design,
wrap up for the day

» Friday 7.2.
e 9:00 First session:

Differential expression
analysis in R

10:00 Coffee break
10:30 Second session:

Annotations and
enrichment analysis

12:00 Lunch

13:00 Third session:
Analysing in Puhti + Allas

14:30 Coffee break

15:00 Fourth session:
Other topics + wrap up

+
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Understanding your data analysis - why?

» You know your own experiments best

« Biology involved (e.g. genes, pathways, etc)
« Potential batch effects etc

» You can tune the parameters, ’play around” and learn more
about your data
« Bioinformaticians might not always be available when needed

»> Allows you to design experiments better

« Enough replicates, reads etc = less money wasted

> Allows you to discuss more easily with bioinformaticians |
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What will | learn?

» Introduction to RNA sequencing
» The basics in differential gene expression analysis
« Central concepts
* Analysis steps
* File formats
> How to operate bunch of tools used in the exercises

* In command line (we use virtual machine that mimics CSCs Puhti
environment)

* In R (R included in the VM)
> How to do the analysis effectively: running a batch job
* In CSC’s Puhti supercomputer
» Things to take into account when designing experiments

+
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Rawfiles.fastq
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Introduction to RNA-seq

SC




What can | investigate with RNA-seq?

Differential expression
|Isoform switching

New genes and transcripts
New transcriptomes
Variants

Allele-specific expression
Etc etc

V.V VYV VYV V V




Development of sequencing methods

Sanger Sanger Sanger lllumina llumina
Radioactive Gels Fluorescent Dye capillary GAIl X Ten

ATGEC

B J"

100’s Kilobase Megabase Gigabase

[1998 2001] 2004 2007 2010 2014

Sanger Human Next-Gen
Invented Genome Sequencing
Sequencing Project “Massively
Parallel”

$2.8B $1,000

https://databricks.com/blog/2016/05/24/genome-sequencing-in-a-nutshell.html CScC




Sequencing technologies

» Sequencing by synthesis = lllumina
» Pyrosequencing - Sanger, 454
» lon semiconductor sequencing - lon Proton
» Sequencing by ligation - SOLID system
» Single molecule real time sequencing - PacBio
llumina MiSeq llumina HiSeq 454 Sequencer
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SOLID system
lon Proton
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Next-generation DNA sequencing
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https://www.slideshare.net/ueb52/introduction-to-next-generation-sequencing-v2




How is the data produced?
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Data analysis

Raw data

TGCTAC...
AATGCG...
GTGACA...

plicates)

-generate cDNA
-amplify

ngVW%W -fragment
— %’3 < -size select
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Chipster

Open source platform for data analysis

Reads
(FASTQ
files)

CACTAG...
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sequencer
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Sequencing by synthesis (lllumina)
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Sequencing by synthesis (lllumina)
» From images to FASTQ file

This is identified as a low quality
base because there are two base:
at this position.

2) Intensity table
(4 values for each
cluster & each cycle)

b ~798 aggtggtttgttaagt
128 2 374 Y 520 53
P S 2687 81.6 188.7
- . Al 3.5 454 .5
1) Image files (4 . oAl -

i
. .5 4943.1 197 -1 , '
images per cycle >3

2 5.5 4358
LRi4 K a4 7 Ol
6 0.3 6Bbh.Z 5788
2 162.6 BAZA 4 497 .6 148 .

3) FASTQ file with the read
sequences & quality values
@read name for each base

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT k

FASTQ file: This peak at position 523 shows

bothaTandaC

+ read name
"*((((***+))% % %++)(% % % %).1***-+*"))**65CCF>>>>>>CCCCCCCB5
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Sequencing by synthesis (lllumina)
> Now, how the flowcell and cluster ACTUALLY look like...
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...and the same with two channels

4-Channel system (4 dyes) 2-Channel system (2 dyes)

HiSeq MiniSeq
MiSe NextSeq
G NovaSeq

l 4 Filter channels l 2 Filter channels

®0 6 ¢ ®0 6 ©

*No detected dye

> https://lwww.ecseq.com/support/ngs/do_you_have_two_colors
_or_four_colors_in_lllumina

cCSC
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lllumina devices

Whatisit |Howlong |Reads per [ Maxread |Lanes
good for it takes run lengt (bp)
MiSeq Microbes, |4-55h 25 M 2 x 300 1
viruses,
targeted
panels
NextSeq Exomes, 12-30 h 400 M 2x150 4
transcripto (all
mes samples to
all 4 lanes)
HiSeq 2500 | Whole Upto 6 300M-4 |2x250 8
genomes days G (different
samples to
different
lanes)
NovaSeq Whole 20—-40h 1.6-20G |2x150
(2017) genomes,
scalable




How was the data produced? generate cDNA

-amplify

ANNAA
L I O e
/ ) / 11— i -size select
| . ANNSN < .

) ‘ / / / Isolate RNAs /\/\/\NN\\/\/AQ\F} add adapters
1[I e || © C / | TAAAAAAAAAANAAANA

T AR T / RNA  PolylA tai

Samples (replicates) I

Data analysis |—— Chipster N
csc Open source platform for data analysis ¢ (

DNA fragments with adapters

sequencing

Raw data

TGCTAC... £§2$5 <;§::::7
AATGCG. ..

GTGACA. .. nles)
CACTAG... 7

@6&&\
%eﬁd 2

+

sequencer csc




How was your data produced?

extraction of poly-A RNAs

TTITIT =

AAAAAAA
A
AAAAA AARL
conversion into ds-cDNA
and shearing
AAAAAA
TTTTT A TTTTT
S—— AAAAA L
AA !\AA
TT T
amplification and
adapter ligation
— _ﬂ—
et —Te aAAAAAA-
—TTTTT -
C— —~AAAAA— S—y VY i V.
— o [T = TTT=
sequencing ( y
single end (SET) paired-end (PET)
ey (L ___,_.\_

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/RNA-seq.html

PolyA purification

cDNA generation
& fragmentation

Library construction

Size selection

CsSC




Paired-end vs
single-end reads

Insert length

Single-end reads

Paired-end reads

sequenced unknown  sequenced
fragment sequence fragment
== [
| |
200 - 1000bp

reference
sequence

reference
sequence

+
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Differently sized fragments & inner distance

> lllumina reads are always of same length
» But the size of the initial mMRNA fragment (=insert) may vary

I Adapter

L I Insert
Read 1 Adapter Read 1 Read 2 Adapter

‘5 S 3
. | 1]
3 < '5

>

. Read 2
Inner distance
< B

Insert size

< >

Fragment length l

https://www.ecseq.com/support/ngs/why-do-the-reads-all-have-the-same-length-when-sequencing-differently-sized-fragments




Read Iength = number of sequencing cycles

ACRACGTGTACGTAGCTAGTTTACGACTGACTCGCAGTAC

MRNA ATGQ%CGTGGATCACTCGCTACTGCACTACGACTACGACAT

gwfé::M g‘;‘ggu'e ATCAGCQGCATCGTGATCGGGCATGCALCGRACGCACTGATA
MWWNW bases) TACGCATAATCAGCTACGATCAGCATT%%CTACTATCACTC

Poly(A) tail CACATCACTTTAACCTGCGGGACTGACGTGACGTCACAAAAA...

frd(gleh(e o ::

S e, TR ADAPTER-CGTGGATCACTCGCTACTGCACTACGACTACGACAT
N’d "a9MeNt ATCAGCGGCATCGTGATCGGGCATGCATCGTACGCACTGATA
Op y
oo

~" (500 TACGCATAATCAGCTACGATCAGCATTAT-ADAPTER

bases)
2GS

e® Fi%%ds Read 1: CGTGGATCACTCGCTACTGCACTACGACTACGACA
i ) E)ases Read 2: CTGATATACGCATAATCAGCTACGATCAGCATTATA
e
each)

— Question: In our example, what is the inner distance?

3’|||||||||||1|||||||||:|||| ||||||||ll||||||IIIIIIIIIIIIIIIIIIIIIIIIII5,
\ Y ] <
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Inner distance cCSscC




Strandedness

> Several methods

» Stranded/directional method = you have the
information of which strand the sequence originally
came from

Not stranded
Stranded

CsSC




Stranded RNA-seq data

» Tells if a read maps to the same strand where the parental gene
is, or to the opposite strand

» Useful information when a read maps to a genomic location where
there is a gene on both strands

» Several lab methods, you need to know which one was used

« TruSeq stranded, NEB Ultra Directional, Agilent SureSelect
Strand-Specific...

Unstranded data:
Does the read come
from geneA or
geneB?

Stranded data

- the read comes
from geneA 1L

CsSC




Stranded / directional RNA-seq data

» Important to indicate which one was used in some analysis tools
« parameter naming differs in different tools
* You can check this with a RseQC tool

Strandedness: TopHat HISAT2 HTSeq
s Read (1) and Fr-firststrand --rna- --stranded
oene .
transcript on strandedness reverse
opposite strands R (SE)/RF
d
Irca (PE)
i Read (1) and Fr-secondstrand --rna- --stranded yes
cene transcript on the strandedness
same strand F (SE)/ FR (PE)
No knowledge Fr-unstrand default --stranded no
of where the
read comes
from



Differential gene expression analysis




Gene vs. transcript/isoform level analysis

gene g'
5!
“u Ef E2Y E3 E4F E5
mRNA C—— I I—T1T—71 717 mANA
Isoform 1 Isoform 1 Isoform 2

Condition 1 Condition 2
6 5 2 o4
Isoform 1 EE T Isoform 1 I
E1 E2 E5 E1 E2 E5
mRNA 1 10 5 mRNA
=== = s 63
T e T, — — e T
Isoform 2 _E2 E3 E4 Isoform 2 _E2 E3 E4
6 22 10 5 2 10 16 6 3 4
(45) 5’ E1 E2 E3 E4 E5 3' (39) 5’ E1 E2 E3 E4 E5 3'

Leng et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments, Bioinformatics, 2013 CSC




Types of differential expression analysis

» DGE (differential gene expression): has the expression of a
gene changed overall?

> DTE (differential transcript expression): has the expression of
an individual transcript changed?

» DTU (differential transcript usage): has the relative expression
of the different transcript isoforms of a gene changed?

— m—

Differential Gene Differential Transcript Differential Transcript
Expression (DGE) Expression (DTE) Usage (DTU)

Expression
Expression

Condition 1 Condition 2 Condition 1 Condition 2 Condition 1 Condition 2 L

CsSC




What is differential gene expression, DGE?

» Test whether collective abundance of transcripts levels from a gene
change between conditions?

Condition 1 = —— « Estimate the magnitude of
Condition 2 e differential expression between
two or more conditions based on
read counts from replicated

samples

mmm Condition 1

=« Estimate the significance of the
difference and correct for multiple
testing

Probability

Expression estimator value

1 test per genel!

Null Hypothesis:
There is no difference in the read distributions in two conditions —

CSC



DGE analysis: typical steps

¥
¥

—
/ —
N7 -
i
| : @ | —_— :
I | l — |
| I E— rn—
I | |
| l ] !
| | | |
Gene A Gene B
A=6 __ -_" B=
-~ N (3] - N ™
° ©° ©° ° 2 Q
= s 5 o o o
5 | & 5 & & &
(& (& (& (/] (/p] (/p]
Gene A 6 5 7 170 100 110
Gene B 1 11 10 3 4 2
Gene C 200 150 355 50 1 3
Gene D 0 1 0 2 0 1

Raw data (reads)

Align reads to
reference genome

Match alignment positions
with known gene positions

Count how many reads
each gene has

Compare sample groups:
differential expression
analysis

CsSC



DGE analysis: steps, tools and files

o~ STEP TOOL FILE
N — — _ L
— — \ Quality control | FastQC
_ /N {[ FAsTQ
i | @ | i Pre- Trimmo- =
| _ | i i | processing | matic 1| FASTQ
——mr ol .
| | — .
. | . Alignment HISAT2 '
| | | | 2 I-[ BAM
— geneA gene B | Quality control | RSeQC
4 g . Quantitation | HTSeq 1 R p——
— _— file (TSV)
w—— — @ —_— — Combine Read count
count files to table (TSV)
= 3 2 lz s (3| |[eoe
- = = o o o
§ § § § § § Quality control | PCA, _
clustering
GeneA [6 |5 7 170 | 100 | 110
Gene B " 1 10 3 4 2 Differential DESeq2, Gene lists
GeneC [200 150 355 (50 | 1 3 expression edgeR (TSV) -
GeneD |0 1 0 2 0 1 analysis T




Practical aspects of working environment
in our course




Materials for the course

» Slides

« available on the course webpage
» Tutorial

« With the exercises

* Available here:
» Virtual machine image

« Ready on the classroom computers, downloadable from the
tutorial page

» Course data
« Downloadable from the tutorial page

« Some data generated for you (like: indexes for alignment)
1. Data for the VM practises
2. Data for the Puhti practises

> “Bonus” material: video lectures in Youtube
« Link in the tutorial page +




Workflow for the course

» Practising:

« Learning the analysis step by step

« Little bit of theory (what & why)

« Exercises in command line and in R (how)

* Now, we are using virtual machine (mimics CSCs Puhti supercomputer)
* Two datasets:

« 2 "toy samples” for the command line part -> only small part of the reads
(this is to save time)

« 10 "real” samples for the R expression analysis part

» How to really do the analysis effectively: running a batch job

« In CSC’s Puhti supercomputer

o)
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Working environment for course

> RNAseq analysis: Interactive analysis

« Use virtual environment in the Oracle VirtualBox (= linux-like
command line environment)

« Make use of all course installations for running RNAseq
analysis

* Mimics CSCs Puhti supercomputer
 Downloadable for your own use also after the course
« Conda modules

> RNAseq analysis: Batch analysis

« Puhti Supercomputer for running analysis with multiple samples
(as an array job)

» RNAseq analysis: Data navigation
» Allas environment at CSC for data navigation

W




Logging in & getting started with VirtualBox

» Log in to the classroom computer
« Password in the back of the classroom (turn your head)

» Use virtual machine image from VirtualBox
1. Go to “Applications” -> “System Tools” -> Oracle VM VirtualBox
Open image “RNAseq_v1” and click “Start”
Log in to virtual machine: press enter, password: rnaseq
Enter password ( press: enter tab) : rnaseq
Expect some glitches

Tune the window so that it fits nicely on your screen
1. View -> Virtual Screen 1 -> Scale Factor = 100%
2. View -> Auto-Resize Guest Display

7. Open Terminal

> Note: copy/paste in terminal: ﬁL

Ctrl + shift + ¢ = copy & ctrl + shift + v = paste CSC
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What is inside VM: different software tools + R

Rawfiles.fastq

{  RawDataQC | | Trimming I
\__(F21QC PRINSEQ) __} H.F’B_'N%E?_I"_fnffewft_@l
I
I
Ref genome.fasta @ i i
o mm e m s m e ———— \ [T TT T
—p 1 Read Alignment | | I Alignment QC 4_
- e T Reeas)” |
N\ o o o e e
: G Gene_annotations.bed

+

CsSC




Follow the tutorial page instructions In:

1. (Virtual Machine image is already downloaded on the
classroom computers)

2. Download the RNAseq bundle from Allas object storage
3. “Untar” the raw data bundle
4. Rename the folder as rnaseq

5. Check the kind of data/files in the folder

+




Testing python and R environment in this VM

« Software tools are installed as conda packages and
named as ‘rnaseq’ environment
* rnaseq environment = all necessary programs are
installed for doing RNAseq analysis
« On the terminal, type: conda activate rnaseq

 To open Rstudio:
* R packages needed in the course also readyly
installed (no need to run installation commands!)
e conda activate base

* Rstudio
 ...under Applications -> Programming -> rstudio

"ol ~U o
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Data analysis workflow

V.V VYV YV V V

Quality control of raw reads
Preprocessing if needed
Alignment to reference genome
Alignment level quality control
Quantitation

Experiment level quality control
Differential expression analysis




Our data is “toy data”

Y

Small subset of RNA-seq reads from chr19
lllumina single-end reads

from two human cell lines: h1-hESC and GM12878
(we practise with hESC sample).

> Note that when analyzing differential expression
you should always have at least 3 biological
replicates!

» We use this small dataset for the first steps of the
analysis to save resources:

* running the exercises with full sample would
take hours to complete

« file sizes would require a lot of memory, making it

difficult to run the analysis on a VM |

CSC
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Data analysis workflow

» Quality control of raw reads




What and why?

» Potential problems
* low confidence bases, Ns
* sequence specific bias, GC bias
« adapters
e seqguence contamination

Knowing about potential problems in your data allows you to
» correct for them before you spend a lot of time on analysis

» take them into account when interpreting results




Software packages for quality control

FastQC
PRINSEQ
MultiQC
FastX

TagCleaner

vV V. YV V VY V




Raw reads: FASTQ file format

» Four lines per read:

@read name

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+ read name

()% %% ++) (%% % %).1***-+*"))**65CCF>>>>>>CCCCCCCB65

> http://en.wikipedia.org/wiki/FASTQ_format
> Note: FASTQ files usually zipped (fastq.gz)
» Most analysis tools can cope with zipped files (.gz)

* For some, you need to unzip files:

gunzip < hesc.fastqg.gz > hesc.fastq |




Base qualities

> If the quality of a base is 20, the probability that it is wrong is 0.01.

* Phred quality score Q =-10 * log,, (probability that the base is wrong)
T C A G T A C T C G

40 40 40 40 40 40 40 40 37 35
» ”Sanger” encoding: numbers are shown as ASCII characters
* Note that older lllumina data uses different encoding

Probability of

Phred Quality Incorrect Base Base Call ASCII coding
Score Call Accuracy in FASTQ file
10 1in 10 90% *
20 1in 100 99% 0
: ?
30 1in 1,000 99.9% '

40 1in 10,000 99.99% | 1
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http://en.wikipedia.org/wiki/FASTQ _format
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http://en.wikipedia.org/wiki/FASTQ _format |
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Per position base quality (FastQC)

38
36
34
32
30
28
26
24
22
20
18
16
14
12

o N R Oy @

Quality scores across all bases {lllumina 1.5 encoding)

L1
I

CICICICIC]

L]

HE R NN E

LILTTT

I,

ok

bad

Position in read (bp)

1234567 8910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 I
ition i
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Per position base quality (FastQC)
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Per position sequence content (FastQC)

Sequence content across all bases

100
%T

%C
o0 %A
%G
80
70
60
50

40

30

10

1 23456 7 8 810 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read {bp)




Per position sequence content (FastQC)

ontent a all bas
100.0

90.0

R % R
mo— § 'a]

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0

1 2 5 7 9 11 12 15 17 19 21 23 25 27 29 31 33 35 37 329
Position in read (bp)

» Enrichment of k-mers at the 5’ end due to use of random
hexamers or transposases in the library preparation

» Typical for RNA-seq data ﬁL

» Can’t be corrected, doesn’t usually effect the analysis csc




| have many FASTQ files — how can | quickly
check them all?

» MultiQC
» Just run in your working directory —this will collect all the relevant files
multiqc
MU“EQQ Sequence Quality Histograms  EEEE ©Help
. FastQC: Mean Quality Scores




Data analysis workflow

» Preprocessing (trimming / filtering) if needed




Filtering vs trimming

» Filtering removes the entire read
» Trimming removes only the bad quality bases

[t can remove the entire read, if all bases are bad
» Trimming makes reads shorter

» This might not be optimal for some applications

» Paired end data: the matching order of the reads in the two files

has to be preserved

« If aread is removed, its pair has to removed as well

+

CSC




What base quality threshold should be used?

> No consensus

» Trade-off between having good quality reads and having enough
sequence

> Start with gentle trimming and check with FastQC

An Extensive Evaluation of Read Trimming Effects on
lllumina NGS Data Analysis

Cristian Del Fabbro'¥, Simone Scalabrin?*, Michele Morgante', Federico M. Giorgi'*

1 Institute of Applied Genomics, Udine, ltaly, 2 IGA Technology Services, Udine, Italy, 3 Center for Computational Biclogy and Bioinformatics, Columbia

University, New York, New York, United States of America

{frontiers i ORIGINAL RESEARCH ARTICLE
- lished: 31 J

published: 31 January 2014

GENEms dol: 'CLSEBEv'f;Ene,Z'CTJ’CICICI'S

On the optimal trimming of high-throughput mRNA
sequence data

Matthew D. MacManes '%*

' Department of Molecular, Celiular and Biomedical Saences University of New Hampshire, Durham, NH, USA
? Hubbard Center for Genome Studies, Durham, NH, USA

o)
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Software packages for preprocessing

» Trimmomatic
» FastX

> PRINSEQ

» TagCleaner
> ..




Trimmomatic options E— 3

| ————————— |

» Adapters
« Cause: reading through the (too short) fragment
* You need: file listing the adapter sequences

» Minimum quality

* Per base, one base at a time or in a sliding window, from 3’ or &’
end

* Per base adaptive quality trimming (balance length and errors)
* Minimum (mean) base quality

» Trim x bases from left/ right

» Minimum read length after trimming

» Copes with paired end data

Read 2

Terminology:

» LEADING edge = 5" end = left side = the beginning of the ree\(;LjL
» TRAILING edge = 3’ end = right side = the end of the read

CSC




Data analysis workflow

» Alignment to reference genome




Alignment:
Check the strandedness of your data




Was your data made with stranded protocol?

» You need to indicate it when:

 aligning reads to genome (e.g. HISAT2)
« counting reads per genes (e.g. HTSeq)

» If you don’t know if/which stranded sequencing protocol was
used, you can check it:

» with RseQC tool infer_experiment.py:

 First align a subset of the reads to genome, and then with
infer_experiment.py compare the locations to reference annotation

» some help/summary collected here:

+




RseQC strandedness report

Example 3: Single-end strand specific:

infer experiment.py -r hgl9.refseq.bedl2 -i SingleEnd StrandSpecific 36mer Human hgl9.bam
#Output: :

This is SingleEnd Data

Fraction of reads failed to determine: 0.0170

Fraction of reads explained by "++,--": 0.9669¢——""
Fraction of reads explained by "+-,-+": 0.0161

Example 1: Pair-end pon strand specific:

infer experiment.py -r hgl9.refseq.bedl2 -i Pairend nonStrandSpecific_ 36mer Human hgl9.bam
#Output: :

This is PairEnd Data

Fraction of reads failed to determine: 0.0172

Fraction of reads explained by "l+4+,1--,2+4-,2-+": 0.4903 *—
Fraction of reads explained by "l+-,1-+,2++,2-=": 0.4925 e



What does this ++, - - mean?
Single end:

++,-- @2
read mapped to ‘+’ strand indicates parental gene on ‘+’ strand gene
read mapped to °-° strand indicates parental gene on ‘-¢ strand

-,
read mapped to ‘+’ strand indicates parental gene on ‘-¢ strand + cene
read mapped to ‘-* strand indicates parental gene on ‘+’ strand

Paired end:
1++,1-2+-2-+
readl mapped to ‘+’ strand indicates parental gene on ‘+’ strand
read] mapped to ‘-¢ strand indicates parental gene on °-* strand @I
read2 mapped to ‘+’ strand indicates parental gene on ‘- strand gene
read2 mapped to ‘-¢ strand indicates parental gene on ‘+’ strand - g

1+-,1-+,2++,2--
read] mapped to ‘+’ strand indicates parental gene on ‘- strand @I
readl mapped to ‘-¢ strand indicates parental gene on ‘+’ strand + | gene .

read2 mapped to ‘+’ strand indicates parental gene on ‘+’ strand
read2 mapped to ‘-¢ strand indicates parental gene on ‘- strand i

CSC




Stranded / directional RNA-seq data

» Important to indicate which one was used in some analysis tools
« parameter naming differs in different tools
* You can check this with a RseQC tool

Strandedness: TopHat HISAT2 HTSeq
s Read (1) and Fr-firststrand --rna- --stranded
oene .
transcript on strandedness reverse
— opposite strands R/RF
Read (1) and Fr-secondstrand --rna- --stranded yes
i transcript on the strandedness
same strand F/FR
gene
No knowledge Fr-unstrand default --stranded no
of where the
read comes
from




Understanding your data analysis - why?

» You know your own experiments best

« Biology involved (e.g. genes, pathways, etc)
« Potential batch effects etc

» You can tune the parameters, ’play around” and learn more
about your data
« Bioinformaticians might not always be available when needed

> Allows you to design experiments better

« Enough replicates, reads etc = less money wasted

> Allows you to discuss more easily with bioinformaticians |

"ol ~U o
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RNAseq Alignment




Aligning reads to reference genome

» The goal is to find the location where a read originated from
» Challenges

* Reads contain genomic variants and sequencing errors

« (Genomes contain non-unique sequence and introns

» RNA-seq aligner needs to be able to map splice junction spanning
reads to genome non-contiguously

« Spliced alignments are difficult because sequence signals at splice
sites are limited, and introns can be thousands of bases long

M R ]
Y e3 I
- o O

Modified from Kim et al (2015) Nature methods 12:358 l
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Alignment programs

» Many aligners have been developed over the years

« Convert genome fasta file to a data structure which is faster to
search (e.g. BWT index or suffix array)

 Differ in speed, memory requirements, accuracy and ability to deal
with spliced alignments

» Use splice-aware aligner for mapping RNA-seq reads

« Examples:
 STAR (fast and accurate, needs a lot of memory)

» HISAT2 (fast and accurate, creating the genomic index needs a LOT of
memory)

» TopHat2 (slower, needs less memory)

+

)
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HISATZ2

HISAT = Hierarchical Indexing for Spliced Alignment of Transcripts
Fast spliced aligner with low memory requirement
Reference genome is (BWT FM) indexed for fast searching
Uses two types of indexes
« A global index: used to anchor a read in genome (28 bp is enough)

« Thousands of small local indexes, each covering a genomic region
of 56 Kbp: used for rapid extension of alignments (good for spliced
reads with short anchors)

Uses splice site information found during the alignment of earlier
reads in the same run

—




HISAT/HISATZ2: How it works

15t run of HISAT to discover splice sites
B eoee — Twojstep approach
« T mapped version of HISAT to
p allow alignment of
[ el junction reads with
small anchors.
unmapped

Ll

2" run of HISAT to align reads by making use of the list of splice sites collected above

__ I
A —
M Read 4 Global Search b------ |- -
Exon 4= Local Search
& Intron 4= Extension

4= Junction extension

Kim et al (2015) Nature methods 12:358 CSscC



HISAT?2 alignment: How 1t works?

Uses an indexing scheme based on
the Burrows-Wheelertransform and
the Ferragina-Manzini (FM) index

Use global search until exactly one
match of at least 28bp (slower)

Extend until mismatch is found
(faster)

Switch to local FM index to align
remaining 8bp

Extend again after junction if
needed

Kim et al (2015) Nature methods 12:358

Rea
Exon
Intron

w22 2 .

24,447,287 24,447,436 24,451,336 24,451,622

I (I
«= Global Search @ @

4= Local Search l el l e2

4= Extension =
2 ||
)
e e
e2 [ |
mismatcn ———
D
Local FM index for chr22 from 24,417,280 to 24,482,559
2 -
24,447,287 l __________________ _ 24,451,622
“ —
e2 [ |
E-------------e-e-- (]




Use splice site information during read
mapping to improve alignment accuracy

M Correctly and uniquely m Correctly mapped Incorrectly Unmapped
mapped (multimapped) mapped
92.1 91.6 92.3 88.9 96.7 97.6 97.6 944 m %

100 4 (938.5) (91.6) (93.8) (90.5) (99) (99.2) (99.3) (97.4) (W% +m%)

o‘ | ‘ ‘ ‘ | ‘ ‘

T
N
< eq e‘?“
Y

~
(&)
]

(o)
o
|

Percentage of reads

N
(6)]
|

Kim D et al. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2615 1L

Apr;12(4):357-60. Csc




HISATZ2 — Indexing genome

 Use splice sites and exon junction information
hisat2_extract_splice_sites.py hg38chr19.gtf > splice_sites.txt
hisat2_extract_exons.py hg38chr19.gtf > exons.txt

Usage: hisat2-build [options]* <reference in> <ht2_index_base>

hisat2-build

—p2
--ss splice_sites.txt \

--exon exons.txt \

Homo_ sapiens.GRCh38.dna.chromosome.19.fa\
hs 19



HISAT2 — Read alignment

Usage: hisat2 [options]* -x <ht2-idx> {-1 <m1> -2 <m2> | -U <r> | --
sra-acc <SRA accession number>} [-S <sam>]

* hisat2 -p 2\
-q \
-- rna-strandness F \
- X hisat-indexes/hs 19\
- U results-trimmomatic/hesc-trimmed.fq.gz \

- S results-hisat/hesc.sam



File format for mapped reads: BAM/SAM

@HD VN:1.5 S0:coordinate
@sQ SN:1 LN:248956422
@sQ SN:2 LN:242193529
@sQ SN:3 LN:198295559
€sQ SN:4 LN:190214555 » BAM is a compact binary file containing
@sQ SN:5 LN:181538259 )
@so SN: € LN:170805979 Eﬂllg}f1€3(j reads.
@sQ SN:7 LN:159345973 ) .
esQ SN:8 LN:145138636 » SAM (Sequence Alignment/Map) contains
@sQ SN:9 LN:138394717 . . . - .
e G010 L 1sanamizs the same information in tab-delimited text.
@sQ SN:11 LN:135086622
@sQ SN:12 LN:133275309
@sQ SN:13 LN:114364323
@sQ SN:14 LN:107043718
@sQ SN:15 LN:101991189
@sQ SN:1¢ LN:90338345 < BAM header
@sQ SN:17 LN:33257441
@sQ SN:18 LN:30373285
@sQ SN:19 LN:53617616
@sQ SN:20 LN:64444167
@sQ SN:21 LN:46709983
g:g gﬁi-’- 3;?5'54“95 alignment information: one line per read alignment,
N s :1560408 . . . .
@s0 SN=Y IN:=57227415 containing 11 mandatory fields, followed by optional tags
@sQ SN:MT LN: 16569
@PG ID:hisat2 PN:hisat2 VN:2.1j0 L:"/opt/chipster/tools/hisat2/hisat2-align-s --wrapper basic-0 --phred33
--min-intronlen 20 --max-intronlen 50p00p -x Homo_sapiens.GRCh38.92 -k 5 -p 16 --passthrough -1 lung3e_l.fastg.gz -2
lung3e_2.fastqg.gz" -
ERR315346.13741151 355 1 11591 1 101M - 11641 151

GTITCTIGTATCCCACCAGCAATGTICTAGGAATGCCT CTCCACARAGTGTTTACTITIGGATITTTGCCAGTCTARCAGGTARAGCCCTGGAGATTICTT
BBBFFFFFFFFFFIIIFIITIIBFFIIIIIIIIIIFIfEFBFFIIIIIIIBBFFFFIFFIIIIIIIFFBFF<BFBFFFFFFFFBBBBFFFFFBB<B<BBBBF MD:Z:36T46G1l7
XG:1i:0 NH:i:4 NM:i:2 XM:i XN:i:0 X0:1i:0 AS:i:-7 ¥S:i:-5 ZS:1:-7 YT:Z:CP



Fields in BAM/SAM files

read name

flag

reference name
position
mapping quality
CIGAR

mate name
mate position
insert size
seqguence

VV YV Y V VYV VY VYV

> base qualities

»> tags




» Really nice pages for SAM/BAM interpretation:

http://www.samformat.info

@HD VN:1.5 SO:coordinate Header
@SQ SN:ref LN:45 section
r001 99 ref 7 30 8M2I4MID3M = 37 39 TTAGATAAAGGATACTG =
r002 O ref 9 30 3S6MIP1I4M = 0 O AAAAGATAAGGATA *
r003 0 ref 9 30 5S6M * 0 O GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0; | Alignment
r004 0 ref 16 30 6M14NSM * 0 O ATAGCTTCAGC - section
r003 2064 ref 29 17 GHSM * 0 0 TAGGC * SA:Z:ref,9,+,556M,30,1;
r001 147 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
Optlolnal fields in the format of TAG. TYPE:VALUI
QUAL: read quality; * meaning such information is not available
SEQ: read sequencs
TLEN: the number of bases covered by the reads from the same fragment. Plus/minus
means the current read is the leftmost/rightmost read mpare first and last lines
PNEXT: Position of the primary alignment of the NEXT read in the template. Set as 0 when the
information is unavailable. It corresponds to POS
RNEXT: reference sequence name of the primary alignment of the NEXT read. For paired-end
sequencing, NEXT read is the paired read, corresponding to the RNAME column
CIGAR: summary of alignment, e.g. insertion, deletion
MAPQ: mapping quality
POS: 1-based position
RNAME: reference sequer ne, e.q. chromosome/transcript id
FLAG: indicates alignment information about the read, e.g. paired, aligned, elc

QNAME: query template name, aka



Mapping quality

» Confidence in read’s point of origin
» Depends on many things, including
* uniqueness of the aligned region in the genome
* length of alignment
* number of mismatches and gaps
» Expressed in Phred scores, like base qualities
« Q=-10 " log,q (probability that mapping location is wrong)
» Values differ in different aligners. E. g. unique mapping is
« 60in HISAT2
« 255in STAR
« 50 in TopHat
« https://sequencing.qgcfail.com/articles/mapg-values-are-really-useful-

but-their-implementation-is-a-mess/

"ol ~U o
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CIGAR string

M = match or mismatch

V VV VYV V V

| = insertion
D = deletion

N = intron (in RNA-seq read alignments)
S = soft clip (ignore these bases)
H = hard clip (ignore and remove these bases)

Example:

@HD VN:1.3 SO:coordinate
@SQ SN:ref LN:45
r001 163 ref 7 30 8M2[4M1D3M =

* The corresponding alignment

Ref AGCATG
r001

T'TAGATAA* *GATAGCTG

TTAGATAAAGGATA*CTG

37 39 TTAGATAAAGGATACTG ~*

TGCTAGTAGGCAGTCAGCGCCAT |

.S C

’/"
b

"
-




Flag field in BAM

» Read’s flag number is a sum of values
 E.g.4 =unmapped, 1024 = duplicate
« Explained in detail at http://samtools.github.io/hts-specs/SAMv1.pdf

* You can interpret them at
http://broadinstitute.github.io/picard/explain-flags.html

This utility explains SAM flags in plain English.
It also allows switching easily from a read to its mate.

Flag: |403 | | Explain

l Switch to mate |

Explanation:

read paired

read mapped in proper pair
read unmapped

mate unmapped

read reverse strand

mate reverse strand

first in pair

second in pair

not primary alignment

read fails platform/vendor quality checks
read 1s PCR or optical duplicate
supplementary alignment

OO00OKRKOONOORK

Summary:

read paired

read mapped in proper pair
read reverse strand

second in pair

not primary alignment

)
wn
)




How did the alignment go”? Check the log file

» How many reads mapped to the reference?
 How many of them mapped uniquely?

» How many pairs mapped?
 How many pairs mapped concordantly?

» What was the overall alignment rate?

25354832 reads; of these:
25354832 (100.00%) were paired; of these:
0098272 (24.05%) aligned concordantly 0 times
18567284 (73.23%) aligned concordantly exactly 1 time
089276 (2.72%) aligned concordantly >1 times
6098272 pairs aligned concordantly 0 times; of these:
724806 (11.89%) aligned discordantly 1 time
5373466 pairs aligned 0 times concordantly or discordantly; of these:
10746932 mates make up the pairs; of these:
8812069 (22.00%) aligned 0 times
1800817 (le.76%) aligned exactly 1 time

13404¢ (1.25%) aligned >1 times
82.62% overall alignment rate L

)
wn
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Full alignment or lightweight mapping?

> Aligning reads to reference genome is slow = many quantitation
tools offer now lightweight "mapping”
» selective alignment (Salmon)
* quasi-mapping (Sailfish, Salmon)
« pseudoalignment (kallisto)

» These tools match reads to transcripts and report transcripts that
a read is compatible with (no base-to-base alignments)

 Difficult to assign reads to isoforms because they share exons, and
technical biases cause non-uniform coverage

Coverage

* Need complete transcriptome N _1._"' | Isoform A
Lt Isoform B

» Srivastava et al 2019: Alignment and mapping methodology
influence transcript abundance estimation

* Quantification accuracy is better when using traditional alignments

+
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Alignment Practicals

» Make an index file for HISAT2
> Align reads to reference genome with HISAT2




Data analysis workflow

» Alignment level quality control




Alignment level quality control

SC




Annotation-based quality metrics

» Saturation of sequencing depth

« Would more sequencing detect more genes and splice junctions?
» Read distribution between different genomic features

« EXxonic, intronic, intergenic regions

 Coding, 3’ and 5’ UTR exons

* Protein coding genes, pseudogenes, rRNA, miRNA, etc
» Is read coverage uniform along transcripts?

« Biases introduced in library construction and sequencing
» polyA capture and polyT priming can cause 3’ bias
* random primers can cause sequence-specific bias
* GC-rich and GC-poor regions can be under-sampled

« Genomic regions have different mappabilities (uniqueness)

+
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read number

150000

100000

50000

Quality assessment with RseQC

» Checks coverage uniformity, saturation of sequencing depth,
novelty of splice junctions, read distribution between different
genomic regions, etc.

» Takes a BAM file and a BED file
» Remember to check that the chromosome names match (chr1 vs 1)

splicing junctions

. _o—©
M s X X i
HJ.:"L_,I"‘""J et aiag NP o —s— Al junction P 3 >
J‘J'l_l" o ¥ @ - |9 known junction o
. oL b o
novel junction o
I H J o complete_novel 5%

g

/
/
/
et
]

partial_novel 13%

200
!

Number of splicing junctions (x1000)
150
1

[ ) oot

JH o

S

ﬁ o _
J w
T T T T T T T T T T known 81%
0 20 40 60 80 100 20 40 60 80 100

percentile of geneBody (5'->3') percent of total reads 1



BED file format

» BED (Browser extensible data) file format is used for reporting
location of features (e.g. genes and exons) in a genome

» 5 obligatory columns: chr, start, end, name, score

» You can get a BED file with gene locations from UCSC Table

Browser:

» Example of a BED file (with known junctions):

columnO columnl column2 column3 column4
chr22 21022430 21024796 JUNC00000001 1
chrl9 201609 201783 JUNC00000002
chrl9 281478 282180 JUNCO00000003 3
chrl9 282242 282811 JUNC00000004 21
chrl9 282751 287541 JUNCO00000005 37
chrl9 287705 288084 JUNC00000006 6
chrl9 288105 291354 JUNC00000007 18
chrl9 307434 308600 JUNC00000008 1 +
chrl9 308603 308858 JUNC00000009 2 CsC
chrl9 308868 311907 JUNC00000010 13 _



QC tables by RseQC

# - y read_distribution:
#211 numbers are READ count (a“gnment, aCtua”y---)
# Total Reads 24808
Total Tags 116738
Total records: 103284 Total Assigned Tags 111352
OC failed: 0 Group Total_bases Tag_count Tags/Kb
Optical/BCR duplicate: 0 CDS_Exons 2211343 90961 41.13
: . S5'UTR Exons 529860 1662 3.14
Non primary hits 18476 : o
T R 0— 3'UIR_Exons 1415234 12423 g8.78
ppe : _ Introns 25801210 5349 0.21
ERPE L EAg CHE | NUOE R g 3280 TSS_up_1kb 1295771 31 0.02
Default=30 TSS_up_Skb 5332522 321 0.06
mapg >= mapg_cut (unique): £0e00 TS5 up_10kb 2804879 584 0.07
Read-1: o TES_down_1kb 1292506 217 0.17
Read-2: 0 TES_down_S5kb 5108821 344 0.07
Reads map to "+': 48292 TES_down_10kb 8282641 373 0.05
Reads map to '-': 32308
Non-splice reads: 509198
Splice reads: 29681
Reads mapped in proper pairs: 0
Proper-paired reads map to different chrom:0 fFOtﬂlﬁfGC(HKiS' 7
Non primary hits: 4
Total reads: 3
Total tags: 8
Read B Read B
ReadA Read A Read A

Reference cse




Splicing graphs by RseQC

splicing junctions splicing events

complete_novel 6%

partial_novel 4%
pampletsovenedd %

known 99%

known 90%

» Splicing junction = exon-exon junction covered by one or more reads

> Splicing event = a read is split across a splice junction

CSC




Visualisation: IGV Genomics Viewer




Visualisation: IGV Genomic Viewer

» You can view your BAM files in IGV Genomic Viewer
1. Browse to
2. Upload your .bam and .bai files
3. Go to known location, zoom in and out
» What can you see?
 Reads/alignments
« SNPs

« Troubleshooting: your favorite gene should be expressed,
but it is not counted by HTSeq. Are there any reads
aligning to this location?

(If yes, the reason might be that they are aligning to other locations

as well -non-unique- and thus not counted by HTSeq)

CSC




Visualisation: IGV Genomic Viewer

IGV - Mozilla Firefox

CSC-RN hesc.fastg.g hesc.fastq.g PRINSEQ-gr A results-f hesc-trimme FTP Dow 3 Index of G 1cv X
< C @ ‘ © | & https://igv.org/app/ v e o ‘ m o e =
Genome ~ Tracks ~ Session ~ Share Bookmark Save SVG Help
IGV ho1® chri9 v chr19:281,325-281,404 | Q, 80 bp ((cursor Guide ) ((Center Line ) ((atiand e ), O
| | | D
281.3‘30 bp ) 281,3‘40 bp ) 281.3]50 bp ) 281.3|60 bp ) 281.3?0 bp 281.3?0 bp ) 281.3|90 bp ) 281'4.00 bp

GGACCACCTGGGTGGGCCTCAGCTGGACTCACAGCAGCTCCCTGCCTGGGCGGGGTCCGGCCTCAGGAGGAGGAGTGCGG Q

J o

Q

A

e e ]

T
T
T
-
T

Refseq Genes Q

PLPP2
o < < < < |
PLPP2
B iovoro UCSanDiego [EEBROAD
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Did | accidentally sequence ribosomal RNA?

» The majority of RNA in cells is rRNA

» Typically we want to sequence protein coding genes, so we try to
avoid rRNA

* polyA capture
* Ribominus kit (may not work consistently between samples)
» How to check if we managed to avoid rRNA?

* RseQC might not be able to tell, if the rRNA genes are not in the
BED file (e.g. in human the rRNA gene repeating unit has not been
assigned to any chromosome yet)

* You can map the reads to human ribosomal DNA repeating unit
sequence (instead of the genome) with the Bowtie aligner, and

check the alignment percentage




Data analysis workflow

> Quantitation




RNAseq quantification




Software for counting reads per genes or
transcripts

» HTSeq

» StringTie
» Cufflinks

» Salmon
> Kallisto
> ...




Counting reads per genes with HTSeq

>

Given a BAM file and a GTF file with gene locations, counts how
many reads map to each gene.

* A gene is considered as the union of all its exons.
 Reads can be counted also per exons.

Use again Ensembl GTF files (or similar)

* Note that GTF and BAM must use the same chromosome naming
» All exons of a gene must have the same gene _id (avoid UCSC GTFs)

Multimapping reads and ambiguous reads are not counted
3 modes to handle reads which overlap several genes
* Union (default), Intersection-strict, Intersection-nonempty

Attention: was your data made with stranded protocol?

* You need to select the right counting mode! ﬁL

.~
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Estimating gene expression at gene level

Exon-union
I ]
d - model
Isoform A l———
Isoform B I .
L = J —J l—ll—l S Exon-intersection
e e model
b Log fold-change Log fold-change Log fold-change
Condition A Condition B (union count) (intersect count) (true expression)
- -- - -- : - - - .. i
— B—I log, (2| = -1 lo 4 =-0.1 lo L =0
g5 (1 0) g ( 5 92 10
I — I 2L

Trapnell et al. Nature Biotechnology 2013

CsSC




Not unique or ambiguous?

read

gene A Ambiguous

Stranded data
- Not ambiguous

Multimapping

(not unique)

CsSC




HTSeq count modes

gene_A

gene_A

gene_A

gene_A

read

gene_A

i
g

gene_A

gene_A

gene B

union

gene A

gene A

gene A

gene A

gene A

ambiguous

ambiguous

intersection
_strict

gene A

no_feature

no_feature

gene A

gene A

gene A

ambiguous

intersection
_honempty

gene A

gene A

gene A

gene A

gene A

gene A

ambiguous
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GTF file format

> 9 obligatory columns: chr, source, name, start, end, score, strand,
frame, attribute

> 1-based

» For HTSeq to work, all exons of a gene must have the same gene _id
 Use GTFs from Ensembl, avoid UCSC

chrl unknown  exon 14362 14829 : = : gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 14970 15038 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 15796 15947 4 - 4 gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 16607 16765 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 16858 17055 - - - gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 17233 17368 . S . gene_id "WASHTP"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 17606 17742 . e . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 17915 18061 : - : gene_id "WASHTP"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 18268 18366 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 24738 24891 - N - gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 29321 29370 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";




HTSeq — Read counts per gene

Usage: htseq-count [options] alignment_file gff_file

htseg-count --format=bam \
--stranded=yes \
--mode=union \
--type=exon \
--idattr=gene_id \
results-hisat/hesc_sorted.bam \
hisat-indexes/hg38chr19.gtf



HTSeq result files: counts and info

id l chr l start ‘ end l len l strand ‘ count ©
ENSG00000064666 19 1026580 1039068 12488 - 7600
ENSG0O0000065000 19 2100987 2164468 63481 = 7497
ENSG00000172270 19 571276 583493 12217 - 7233
ENSG0O0000071626 19 1407568 1435687 28119 + 5178
ENSGO0000011304 19 797074 812327 15253 + 4943
ENSGO0000071564 19 1609289 1652605 43316 - 4026
ENSGO0000176619 19 2427637 2456996 29359 = 3561
ENSG00000104904 19 2269508 2273490 3982 - 2524
ENSG00000099622 19 1259383 1274880 15497 - 2424
ENSG00000118046 19 1177557 1228435 50878 - 1667
ENSG0O0000115268 19 1438357 1440494 2137 + 1638
ENSGO0000104885 19 2164148 2232578 68430 + 1587
__no_feature 4007
__ambiguous 1519
__too_low_aQual 0
__not_aligned 0
__alignment_not_unique 13744
not_counted 24270
counted 75187
total 99457

CsSC




|Isoform switching can confound DGE analysis

» The number of reads obtained from an expressed gene depends on
the transcript length

» Longer transcripts produce more fragments and hence more reads

> If a gene switches from one transcript isoform to another one, this
can confound DGE analysis

B D Gene A
B Transcript 1 (length L)
BN Transcript 2 (length 2L)

"~ -
---- ———_—
b T -
[

Control sample Cancer sample

Expression level of gene A is the same in both samples, but ﬁL

cancer cells express the shorter isoform csc




Isoform switching can confound DGE analysis

>

The number of reads obtained from an expressed gene depends on
the transcript length

» Longer transcripts produce more fragments and hence more reads

If a gene switches from one transcript isoform to another one, this
can confound DGE analysis

B D Gene A

| ] Transcript 1 (length L)
N B Transcript 2 (length 2L)
Control sample Cancer sample

We get twice as many reads from the control sample ﬁL
—> is gene A downregulated in cancer?




Should we gquantitate at transcript level?

» Gene-level quantitation is more accurate than transcript-level

« Technical biases cause non-uniform coverage —> difficult to assign
reads to different isoforms

» High variation in abundance estimates of lowly expressed transcripts

» BUT we can improve gene-level analysis by adjusting counts to
reflect the underlying isoform composition!

FIOOOResearch F1000Research 2016, 4:1521 Last updated: 19 AUG 2019

'.) Check for updates
METHOD ARTICLE

a5 Differential analyses for RNA-seq: transcript-level

estimates improve gene-level inferences [version 2; peer review:

2 approved] L
Charlotte Soneson "' 1.2, Michael |. Love "*'34 Mark D. Robinson *' 1.2 )




GTF file format

> 9 obligatory columns: chr, source, name, start, end, score, strand,
frame, attribute

> 1-based

» For HTSeq to work, all exons of a gene must have the same gene _id
 Use GTFs from Ensembl, avoid UCSC

chrl unknown  exon 14362 14829 : = : gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 14970 15038 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 15796 15947 4 - 4 gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 16607 16765 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 16858 17055 - - - gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 17233 17368 . S . gene_id "WASHTP"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 17606 17742 . e . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 17915 18061 : - : gene_id "WASHTP"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 18268 18366 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 24738 24891 - N - gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";
chrl unknown  exon 29321 29370 . = . gene_id "WASH7P"; gene_name "WASH7P"; transcript_id "NR_024540"; tss_id "TS557245";




Is isoform switching a major problem?

» The magnitude of the effect depends on
» the extent of differential transcript usage (DTU)

 the difference in length between the differentially expressed isoforms.
* If the longer isoform is < 34% longer, false positives are controlled ok

« Among all human transcript pairs in which both transcripts belong to the same
gene, the median length ratio is 1.85

* For one third of such pairs the longer isoform is < 38% longer

» Many human genes express mainly one, dominant isoform

« - the global impact of isoform switching is relatively small in many
real datasets (as opposed to simulated ones)

Soneson et al. F1000 Research 2016 CSC




Combine individual count files into a count table

> Combine the count files into one file

> We use a separate file for describing the experimental setup

5
€
[
o
Gene A Gene A 6
Gene Gene| Gen Gene Gene B 11 !
Gene p Gene B !
Gene| Geny >€N¢ Gene C 200 L
Gene G G Gene Gene C
enej en Gene D 0 Read
Gene| Gene| Gen{ Gene Gene D I
counts
(TSV, table)
O @ Description
- |« © - |~ © of the samples:
©° ©° ©° 2 2 9
c = c £ £ £ Read table
5 S o 8 | ® & henodata
S 8 8 |8 & | & (TSV, table) | T\ P
Gene A 6 5 7 17 10 1
Gene B 11 1 10 3 4 2
Gene C 200 150 355 50 1 3
Gene D 0 1 0 2 0 1 CSsC




Describe the experiment (phenodata file)

» Describe experimental groups, time, pairing etc with numbers
* e.g. 1 =control, 2 = cancer
> Define sample names for visualizations

sample original_name |description |patient [group [treatment [time hours
ngs001.tsv [SRR479052 1 C24 1 1|Control 1(24h
ngs002.tsv [SRR479053 1 C 48 1 1|Control 2(48h
ngs003.tsv [SRR479054 1 DP_24 1 2|DPN 1(24h
ngs004.tsv |SRR479055 1 DP_48 1 2|DPN 2|48h
ngs007.tsv [SRR479058 2 C 24 2 1|Control 1(24h
ngs008.tsv [SRR479059 2_C 48 2 1|Control 2(48h
ngs009.tsv [SRR479060 2 DP_24 2 2(DPN 1(24h
ngsO1l.tsv [SRR479062 2 DP_48 2 2(DPN 2(48h
ngs015.tsv [SRR479066 3 C24 3 1|Control 1(24h
ngs016.tsv [SRR479067 3 C 48 3 1|Control 2(48h
ngs017.tsv [SRR479068 3 DP_24 3 2(DPN 1(24h
ngs018.tsv [SRR479069 3 _DP_48 3 2(DPN 2(48h

)
N

)




Data analysis workflow

» Describing the experiment with phenodata




Moving to R

YV VYV

So far we have used command line tools

Now, we move the data to R and start using Bioconductor
packages

« RStudio is installed in the VM used in the course
* You can install R+RStudio on your own computer
e ...oruse them in Puhti

The data is now MUCH smaller

» Instead of multiple sizable FASTQ and BAM files, we now
have one table of gene counts

* |n our exercises, we now switch to a different dataset with 10
full-sized samples

It might be that you are starting the analysis at this point

only |

‘/"

W




R, RStudio & Bioconductor

» R: free software environment for statistical \
computing and graphics R

» RStudio: open source software for the R
statistical computing environment —a GUI of @ StUdIO
sorts

» Bioconductor: tools (“R packages”) for the
analysis of high-throughput genomic data.

Open source and open development. BiOCOndUCtOr

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

« We are using: DESeq2 and edgeR
packages

' ——

CSC




iny recap of R

‘ece RStudio
o X ndid } ~ Addins ~ R Project: (None) ~
Q] Untitled1* counts_data phenodata - Environment  History  Connections =
Source on Save QN “Run *= Source ~ T ~* Import Dataset ~ )’ List ~
. 13 install.packages("ggplot2") “k Global Environment ~
. 14 .
Yi of
Our SCI'lpt. 15 #Load the libraries: data 10 obs. of 5 variables
16 dds Large DESeqDataSet (60675 elements, 13.9 Mb)
th ‘th 17 library(DESeq2) DESEQ2_DEGs 9851 obs. of 16 variables ‘I : bl
1S 1S ere 18 library(edgeR) p List of 9 Our Varla es
1 . W i phenodata 10 obs. of 3 variables
you Store 20  counts_data <- read.table("ngs-data-table.tsv", header=T, sep="\t", row.names=1)
21  phenodata <- read.table("phenodata.tsv", header=T, sep="\t") res Large DESeqResults (6 elements, 7 Mb)
22 sig 9851 obs. of 16 variables
your 28 group <- "group" vst Large DESeqTransform (60675 elements, 14.4 Mb)
24 groups <- as.character (phenodatal,group]) Values
25
desc Factor w/ 10 levels "lung3e","lung3f",..: 4 3 5.
Commands 26 dds <- DESegDataSetFromMatrix(countData=counts_data, colData=data.frame(groups=grour M - - una.
27 Files Plots Packages Help Viewer
i I I k: I =0
and notes' 28 # Calculate statistic for differential expression, merge with original data table, k ® Zoom = Export + © 5' %, Publish ~
. 29 dds <- DESeq(dds) # The standard differential expression analysis steps are wrapped
30
.jo} res <- results(dds) # Results tables are generated using the function “results Dispersion plOt
69:43 (Top Level) = R Script ¢
Console  Terminal = -
i Downloads/sample_data

ENSGUVYLVVV4A0Y /.33£404 5.£9b333 4./(39/93
ENSGO0000000938 9.004090 8.735422 8.416067

1e+00
|

# Make PCA plot

data <- plotPCA(vst, intgroup=c(“groups"), returnData=TRUE) LT .

percentVar <- round(10@ * attr(data, "percentVar")) # Tidy the variance percentage oL : . . .

desc <- phenodata[,"description”] # Get the sample descriptions from phenodata. n . ) Vlsuallsatlons

p <- ggplot(data, aes(PCl, PC2, color=groups, title="PCA plot for TREATMENT")) + K
geom_point(size=6) +
geom_text(aes(label=desc),hjust=0, vjust=1.7, color="black", size=4) + n ® gene-e§ ﬁles paCkageS e oo
xlab(paste@("PC1: ",percentVar[1],"% variance")) + . * fitted ?
ylab(paste@("PC2: ",percentVar[2],"% variance")) e s . . ® final

# adjust figure size and save it. i : : -

ggsave(p, filename = "PCA plot.pdf", width = 15, height = 12)

## Dispersion plot: 1e-01 1e+01 1e+03

plotDispEsts(dds, main="Dispersion plot", cex=0.2)

legend("topright"”, legend="fitted dispersion”,col="red", pch="-", cex=0.8) mean of normalized counts

The console:
the
commands
go here 1

dispersion
1e-04

VVVVVV++++VVVVVYV
1e-08

CSC




First...

» Clean & format the data (examples given)
> (Install &) open the needed packages
library (DESeq2)
> Set the working directory to the folder where the data is

» Import the data
data <-read.table(“my data table.tsv”)

+




Data analysis workflow

» Experiment level quality control




Experiment level quality control

» Getting an overview of similarities and dissimilarities
between samples allows you to check

* Do the experimental groups separate from each other?

 Is there a confounding factor (e.g. batch effect) that should be
taken into account in the statistical analysis?

* Are there sample outliers that should be removed?

» To check this, we use PCA plot




Dimension reduction / PCA

» PCA = Principal Component Y
Analysis PCA2 A

> finds the principal
components of data

> PCs
. . X
« = the directions where there X x, X
is the most variance ’S(xx "
« = the directions where the
data is most spread out In our case instead of X and Y:
> Why we use PCA here? genel, gene2, gene3... genel838
= MANY dimensions!

* By reducing the dimensions
the data can be visualized




What are we looking for?

» Do the experimental groups separate from each other?
> Is there a confounding factor (e.g. batch effect) ?
« If the 2" component explains only little variance, it can ignored

> Outliers?

‘ Cancer

Outlier?

1

2"d principle componen( (5%) 2

>

1st principle component (40%)

Normal
@ O

2"d principle componen@
—>

Gender?
Age?
Method?

1st principle component (40%)

—

CsSC



PC2 11% variance

PCA plot by DESeqg2

G » The first two principal
components, calculated
after variance stabilizing
transformation

«aion  » |Ncdicates the proportion

o: of variance explained by
& each component

« [f PC2 explains only a
small percentage of
variance, it can be
ignored

» PC1: 76% variance \ I

CS

GM3

GMm2

)




MDS plot by edgeR

» Distances correspond to the logFC or biological coefficient of
variation (BCV) between each pair of samples

» Calculated using 500 most | o st
heterogenous genes (that have e
largest dispersion when treating.. .
all samples as one group)

; -]
g | chip.treated2fb T cesatndll
chip.treated3fb
chip.untreated3fb
g 3l T T T T T T T
©.8 9.6 0.4 0.2 0.0 0.2 0.4 0.6

Dimension 1



Sample heatmap by DESeq2

Color Key

@
w0
™~
= | R
0 20 40 &0 ‘ ’
Value

H2
H3
H1
H4
GM1
GM2
GM3

» Euclidean distances between the samples, calculated after

variance stabilizing transformation [

CsSC




Data analysis workflow

» Differential expression analysis




Differential expression analysis
in RNA-seq

—




Differential expression analysis in RNA-seq

» How differently is gene A expressed in treatment vs controls?

Treatment 1
Treatment 2
Treatment 3

Gene A

Gene B

Gene C

Gene D

® | Control 1

200

0

9 | Control 2

150

1

~ (Control 3

355

0

-
N
-
o
-
-

w
H
N

a
o
-
w

2 0 1

 Basic t-statistic: how far from each other are the means of the
two groups? (In terms of deviance/variation/dispersion)

| Not quite as simple as that...

+

CSC




Differential expression analysis in RNA-seq

» How differently is gene C expressed in treatment vs controls?

T1 T2 T3 C1 C2 C3
GeneA |1 0 1 6 7 5
GeneB |9 8 10 2 4 2
Gene C | 10 12 11 7 20 16 ???

 Basic t-statistic: how far from each other are the means of the
two groups? (In terms of deviance/variation/dispersion)

| Not quite as simple as that...

+

CSC




Software packages for DE analysis

edgeR

DESeq2

Sleuth

DRIMSeq
DEXSeq

Cuffdiff, Ballgown

Limma + voom, limma + vst

vV Vv VY V V VY V VY




Differential gene expression analysis

Normalization

Dispersion estimation

Log fold change estimation
Statistical testing

Filtering

vV V V VYV VY V

Multiple testing correction




Differential expression analysis:
Normalization




Normalization

» For comparing gene expression between (groups of) samples,

normalize for

» Library size (hnumber of reads obtained)

« RNA composition effect 4 I

—
» The number of reads for a gene is also affected by transcript

length and GC content

* When studying differential gene expression we assume that they

stay the same ﬁL

CSC




Metrics for quantifying gene expression levels

> RPKM
« Reads Per Kilobase per Million mapped reads
» Normalize relative to sequencing depth and gene length
» FPKM
« Similar to RPKM but count DNA fragments instead of reads
« Used in paired end RNA-Seq experiments to avoid bias
> TPM
e Transcripts Per Million
« Normalize for gene length, then normalize by sequencing depth

Wagner GP et al. Measurement of mRNA abundance using RNA-Seq data: RPKM measure is 1

inconsistent among samples. Theory Biosci. 2012 Dec;131(4):281-5. CSC




Consideration for the between sample normalisation

Control Treatment
o 1))

&\

a®

7-0\1(“
63\'2\
Control Treatment
Control  [Treatment [Normalize |[Normalize Control

Gene Counts Counts d d Control Treatment [Normalize |Treatment
G1 2.00 6.00 0.25 0.25 Gene Counts Counts d Normalized

-FG) [G1 2.00 6.00 0.20 0.06
G2 2.00 6.00 0.25 025 (-FG) = . i P T
G3 2.00 6.00 0.25 0.25 ' G3 2.00 6.00 0.20 0.06
G4 2.00 6.00 0.25 0.25 G4 2.00 6.00 0.20 0.06
FG 2.00 76.00.00 0.25 317 — 2.00] _ 76.00 0.20 0.76

https://haroldpimentel.wordpress.com/2014/12/08/in-rna-seq-2-2-between-sample-normalization/ |
CscC




s in Bioinformatics Advance Access published September 17, 2012

Briefin
doi:10.1093/bib/bbs046

BRIEFINGS IN BIOQNFORMATICS. page | of 3

A comprehensive evaluation of
normalization methods for lllumina
high-throughput RNA sequencing
data analysis

Marie-Agnes Dillies”, Andrea Rau”, Julie Aubert”, Christelle Hennequet-Antier”, Marine Jeanmougin”,
Nicolas Servant™, Céline Keime®, Guillemette Marot, David Castel, Jordi Estelle, Gregory Guernec, Bemd Jagla,
Luc Jouneau, Denis Lalo€, Caroline Le Gall, Brigitte Schaéffer, Stéphane Le Crom®, Mickaél Gued;j”, Florence Jaffrézic”

and on behalf of The French StatOmique Consortium

> “FPKM and TC are ineffective and should be definitely
abandoned in the context of differential analysis”

> “In the presence of high count genes, only DESeq and
TMM (edgeR) are able to maintain a reasonable false

positive rate without any loss of power” 1L

CSC




?

thod to use

10N me

) Which normalisat

a

san|eA pazilew.lou ¢6o

(

20
5
0
5
0

uQ Med DESeq TMM Q RPKM RawCount

TC

Equivalent library sizes / Presence of high count genes

I T T
020 0L0
ajel aaysod-as|e

000

RPKM RawCount

Q

TMM

DESeq

Dillies et. Al A comprehensive evaluation of normalization methods for lllumina high-throughput RNA sequencing data

analysis, Briefings in Bioinformatics, Volume 14, Issue 6, November 2013, Pages 671-683,

OXTORD

UNIVERSITY PRESS



Normalization by edgeR and DESeq

» Aim to make normalized counts for non-differentially

expressed genes similar between samples
* Do not aim to adjust count distributions between samples
» Assume that
* Most genes are not differentially expressed

 Differentially expressed genes are divided equally between

up- and down-regulation

» Do not transform data, but use normalization factors within

+

CSC

statistical testing




Normalization by edgeR and DESeq — how?

> DESeq(2)

« Take geometric mean of gene’s counts across all samples
« Divide gene’s counts in a sample by the geometric mean

« Take median of these ratios 2 sample’s normalization factor
(applied to read counts)

» edgeR

« Select as reference the sample whose upper quartile is closest to
the mean upper quartile

» Log ratio of gene’s counts in sample vs reference - M value

« Take weighted trimmed mean of M-values (TMM) = normalization

factor (applied to library sizes)
« Trim: Exclude genes with high counts or large differences in expression

* Weights are from the delta method on binomial data

"ol ~U o
L L S




Library size factor estimation in DESeq2

RC of gene 1
RC of gene 2
RC of gene 3
RC of gene 4

RC of gene 1.
RC of gene 2.
RC of gene 3.
RC of gene 4.

—-|GM of gene 1
—|GM of gene 2
—-|GM of gene 3
—|GM of gene 4

— [median_coll, median col2, ...]

Median value of each sample serves as scaling factor for that sample

Geometric mean (GM) is across all samples of respective gene read counts (RC)
and then median value is obtained for each sample across ratios of all genes

CsSC




TMM (trimmed mean of M values)

normalization for RNA-seq data
Weighted sum of log-fold-

changes for all non-trimm
ed genes

logo
log,(TMM ") =¥

r
where M ;. =

Nj-Y N,.-Y
an k~Ygk  Nr—tgr ;
NiYgk NyYgr

ng’YgT > 0.
Weight for M
(Yg high -=> smallw
Yg low -> large w)
Sum of weights over all no Because of negative binomiall!
n-trimmed genes (correct for elevated variance f

or high read counts)

Robinson & Oshlack 2010

+

Source: https://slideplayer.com/slide/7647573/ ¢ 5 ¢




edgeR and DESeqg2 expect raw read counts

» Raw counts are needed to assess the quantification uncertainty

» Uncertainty information is lost if counts are transformed to FPKM
 FPKM = fragments per kilobase per million mapped reads.

* Normalizes for gene length and library size. Example:

» 20 kb transcript has 400 counts, library size is 20 million reads: FPKM = (400/20) /
20

» 0.5 kb transcript has 10 counts, library size is 20 million reads: FPKM = (10/0.5) /
20

* - in both cases FPKM =1, but it is less likely to get 400 reads just by chance

» The negative binomial assumption of edgeR and DESeq2 is flexible
enough to deal with gene-level counts summarized from Salmon’s
transcript-level abundance estimates




Differential expression analysis:
Dispersion estimation




Dispersion

» When comparing gene’s expression levels between groups, it
is important to know also its within-group variability

> Dispersion = (BCV)?
« BCV = gene’s biological coefficient of variation

« E.g.if gene’s expression typically differs from replicate to
replicate by 20% (so BCV = 0.2), then this gene’s dispersion is
0.22=0.04

> Note that the variability seen in counts is a sum of 2 things:

« Sample-to-sample variation (dispersion)

« Uncertainty in measuring expression by counting reads
CSC




How to estimate dispersion reliably?

» We cannot typically afford tens or hundreds of biological
replicates

- it is difficult to estimate within-group variability

» Solution: pool information across genes which are expressed
at similar level

« assumes that genes of similar average expression strength have
similar dispersion

> Different approaches
* edgeR
« DESeq2

+




Dispersion estimation by DESeq?2

»> Estimates genewise dispersions using maximum likelihood

> Fits a curve to capture the dependence of these estimates on
the average expression strength

» Shrinks genewise values towards the curve using an empirical
Bayes approach

Dispersion plot

« The amount of shrinkage ]

depends on several things
including sample size

« Genes with high gene-wise
dispersion estimates are
dispersion outliers (blue
circles above the cloud) and
they are not shrunk

1e+01

1e-02

dispersion

1e-05

| gene-est
i fitted
- - e final

T T T T
1e-01 1e+01 1e+03 1e+05

1e-08

mean of normalized counts

’/“
e

wnn
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Shrinkage estimation

Population distribution (unobserved) _e” e

Empirical distribution

Shrunken estimates (or MAP)

CsSC




Differential expression analysis:
Statistical testing




Generalized linear models

» Model the expression of each gene as a linear combination of
explanatory factors (eg. group, time, patient)

« y=a+ (b " group)+ (c " time) + (d ° patient) + e
y = gene’s expression
a, b, c and d = parameters estimated from the data

a = intercept (expression when factors are at reference level)
e = error term

» Generalized linear model (GLM) allows the expression value

distribution to be different from normal distribution

* Negative binomial distribution used for count data

+

"ol ~U o
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Example of DESeq2 design matrix

log,u,
log,u,
log, 1,
logypy
log,ps
log,p

Sex

Experiment

Treatment
Control
Treatment
Control
Treatment
Control

I/

110
101
110
101

(111

L100

~

o

B intercept
B sex female vs male

B experiment Ctr_vs_treat

DESeq2 design = ~ sex+ experiment

~

_/

CSC




Statistical Distributions

gaussian, poisson, negative binomial -- what does all this mean?

 RNA-seq data fits a Negative Binomial (NB) distribution.

« But really, that’s just saying that RNAseq looks like “counts” data with
more variation than just statistical fluctuations— it also has biological
variation in it.

- How do we know? Because, when you measure variance (per gene,
between replicates), it's not equal to the mean, and it's not even a good

linear fit
(a) 1 I 1 1 L 1
10° = .
poisson
3
8
* oy * For real data, even the NB fit
24,0 e isn’t always great
1074 = 8
| | | | | ]
10° 10" 10* 10 10* 10° '
M. Hammell csc




Statistical testing

» edgeR

« Two group comparisons
» Exact test for negative binomial distribution.

« Multifactor experiments
* Generalized linear model, likelyhood ratio test.

» DESeq2

« Shrinks log fold change estimates toward zero using an
empirical Bayes method

« Shrinkage is stronger when counts are low, dispersion is high, or there
are only a few samples

* Generalized linear model, Wald test for significance

« Shrunken estimate of log fold change is divided by its standard error and
the resulting z statistic is compared to a standard normal distribution

+
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Multiple testing correction

> We tests thousands of genes, so it is possible that some
genes get good p-values just by chance

* This problem is much bigger, if you test transcripts (DTE)

» To control this problem of false positives, p-values need to be
corrected for multiple testing

> Several methods are available, the most popular one is the
Benjamini-Hochberg correction (BH)

» The adjusted p-value is FDR (false discovery rate)

+
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Filtering

» Reduces the severity of multiple testing correction by
removing some genes (makes n smaller)

> Filter out genes which have little chance of showing
evidence for significant differential expression

* genes which are not expressed

« genes which are expressed at very low level (low counts are
unreliable)

» Should be independent
« do not use information on what group the sample belongs to

+

‘/"

» DESeq2 selects filtering threshold automatically
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Summary of differential expression analysis

» Means of the raw counts within groups can’t be compared
» Because library size varies & the RNA composition effect messes things up
- NORMALIZATION
» Expression values don’t follow normal distribution
- GLM, NEGATIVE BINOMIAL DISTRIBUTION

> Direct (gene-wise) estimation of dispersion is not good

» Because there are too few replicates
- POOL DISPERSION INFORMATION ACROSS GENES

» We are doing many comparisons
- MULTIPLE TESTING CORRECTION, FDR




edgeR result table

» logFC = log2 fold change

> FDR = false discovery rate (Benjamini-Hochberg adjusted p-

value)

logFC logCPM PValue / FOR  \
FBQn0039155  -4.68610492988647  6.03098899098003  5.67559613973167e-123 §.31349310601679¢-11
FBQn0029167  -2.22179416128475  8.24421076784694  1.36882477184621e-55  [6.40746875701213¢-52
FBQn0034736  -3.48749671162214  4.04006374116452  1.4075253024686e-49  [4,.39241757476368e-46
FBQn0035085  -2.51385564715056  5.53462890050981  3.0853842886838e-49  (7.22251217766443e-46
FBQn0039827  -4.25061603280824  4.50870730232648  1.68130004303576e-47  $.14806620058016¢e-44
FBQnO000071  2.75208722125534  4.68516991052067  6.74381730816232e-47  1\05226029398359¢-4
FBQn0029896  -2.42499289598 518422350459525  2.30767413477857e42  3.08634932139957¢,

|
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DESeq2 result table

» log2FoldChange = log2 of the ratio meanB/meanA

» padj = Benjamini-Hochberg adjusted p-value A~
J baseMean log2FoldChange IfcSE stat pvalue l/ padj
FBgn0026562 4728242 -2.4 0.08 -30.26 4.158e-201 3.309e-197
FBgn0039155 924.27 -4.46 016 -27.04 4.476e-161 1.781e-157
FBgn0029167  4287.44 -2.21 0.08 -26.75 1.107e-157 2937e-154
FBgn0035085 654.94 -2.5 011 -22.08 5.278e-108 1.050e-104
FBgn0034736  231.7 -3.29 0.18 -18.28 1.261e-74 2.006e-71
FBgn0000071  359.53 26 0.14 17.98 2.741e-72 3.635e-69
FBgn0034434 153.84 -3.69 0.21 -17.26 9.008e-67 1.024e-63
FBgn0039827 342.77 -3.83 0.23 -16.54 1.742e-61 1.733e-58
FBgn0029896 513.08 -2.34 0.14 -16.29 1.168e-59 1.033e-56
FBgn0052407  220.26 -2.2 015 -14.99 8.597e-51 6.841e-48
FBgn0037754  299.03 -2.23 015 -14.94 1.916e-50 1.386e-47

\/csc




Analyzing differential gene expression:
things to take into account

> Biological replicates are important!

» Normalization is required in order to compare expression

between samples
« Different library sizes
 RNA composition bias caused by sampling approach
» Raw counts are needed to assess measurement precision
« Counts are the "the units of evidence” for expression

« Gene-level counts summarized from Salmon’s transcript-level

estimates seem to be ok

» Multiple testing problem 1

ol o3
L I




Annotations

» We want to annotate our Ensembl identifiers with gene
names + descriptions:

« ENSGO00000122852 -> “SFTPA1”, “surfactant protein A1”

» biomaRt tools allows to make queries to databases like
Ensembl

1. Select database & dataset to use
ensembl <- useMart('"ensembl",
dataset="hsapiens gene ensembl")
2. Query:
. attributes = what we retrieve
. filters = restrictions for the query
. values = values for the filter

genes_ensembl org <- getBM(attributes <-
c("ensembl gene id", "external gene name",
"description”), filters = "ensembl gene id", values =
genes, mart = ensembl)

 List functions help to select: ListMarts, ListDatasets, ﬁL
ListAttributes...

CSC




Enrichment Analysis analysis




A key challenge in omics’ studies:
how to move from expression changes to biological functions

RNAseq data Animal cell

lysosome  rinosomes

centriole /
centrosome
) e U
peroxisome \ < /

smooth
endoplasmic
reticulum

. nuclear pore

nucleolus

nucleus

nucleoplasm

I‘J nuclear

. | = __,__.l/_,/ "‘ 4 envelope
\ 4 s ;" \ rough
. endoplasmic
g reticulum
Golgi
apparatus\: _’ mitochondrion

secretory vesicles  cytoplasm

> Are there any specific biological functions that are

characterized by gene expression changes? |
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Enrichment Analysis in General

» A genome-wide application tool
> Results are taken as indicative rather than conclusive

» Often done as secondary analysis to get high level
understanding of biology

> Related names for this analysis: Functional interpretation
analysis; GSEA, GSA, Pathway analysis

+




Mainly two types of enrichment analysis

Threshold-

dependent
e.g.
Fisher’s
Test

DOWN

ENRICHMENT
TEST

Whole-
distribution

e.g. GSEA




Overrepresentation analysis
(= Threshold based analysis)




Enrichment Analysis: Introduction

> Break down cellular function into gene sets

Every set of genes is associated to a specific cellular function,
process, component or pathway

All known genes in a spemes
categorlzed Into groups

Gene set =
- Predefined set of genes
which are grouped by their

gene function, pathway
‘f‘ A‘ f&

membership, etc.
0
=g o I < "‘o

| DEGs

Bgm Tdoed 1L

Image source: https://github.com/hbctraining/DGE workshop cscC




Hypergeometric testing of gene sets

m is the total number of genes

j is the number of genes are in the functional category
n is the number of differentially expressed genes

k is the number of differentially expressed genes in the

category
In gene set
Not in gene set n-k m-n-j+k m-j
Total n m-n m

+
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Enrichment Test

Significant genes Overlap between
significant genes
and gene-set

Fisher’s Exact Test

Is this overlap larger than expected by random sampling
the array genes?

/
/ —
C Statistical Model:
\
\

Background set

—

)
wn
)




How do we perform the gene set testing?

* Find a set of differentially expressed genes (DEGs)
« Are DEGs in a set more common than DEGs not in a set?
* Fisher test stats::fisher.test()

« Conditional hypergeometric test, to account for directed
hierachy of GO GOstats::hyperGTest()

+




Fisher's exact test based methods are not
optimal
» The outcome of the overrepresentation test depends on the

significance threshold used to declare genes differentially
expressed

« cut-off is always somewhat arbitrary

» Functional categories in which many genes exhibit small
changes may go undetected.

» Genes are not independent, so a key assumption of the
Fisher’s exact tests is violated.

> Relative strength of DE changes is ignored |




Enrichment Analysis: Introduction

» Main rationale — functionally related genes often display a
coordinated expression to accomplish their roles in the cells

» Aims to identify gene sets even with "subtle but coordinated™
expression changes that would be missed by DEGs threshold
selection

» Gene Set Enrichment Analysis - Statistical methods
determine significance of enrichment for gene set by
comparing distribution of genes in set to ‘background

distribution’

f* g
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GSEA: Gene set enrichment analysis

» The null hypothesis is that the rank ordering of the genes in a
given comparison is random with regard to the case-control
assignment.

» The alternative hypothesis is that the rank ordering of genes
sharing functional/pathway membership is associated with
the case-control assignment.

+




GSEA: Gene set enrichment analysis

1. Sort genes by log fold change

2. Calculate running sum - increment when gene in a set,
decrement when not

3. Maximum of the runnig sum is the enrichment score - larger
means genes in a set are toward top of the sorted list

4. Permute subject labels to calculate significance p-value

A Phenotype B Leading edge subset
Classes e ‘ Gene set S
\
)
Gene set S L
2 Correlation with Phenotype
- B
: . ‘; :*
-
8 _____________ B Random Walk
© s e o
° ES(S) I ™
£ ! -
CREEE———— @4 $« ..¥Y.__. .
O SRR Maximum deviation ~Gene List Rank
0-C0 e : from zero provides the
i enrichment score ES(S)
Subramanian, Tamayo, et al. (2005, PNAS 102, 15545-15550) |

Mootha, Lindgren, et al. (2003, Nat Genet 34, 267-273). CsSC




Advantages of using GSEA

Agnostic to the type of gene set and the source of annotation
Operates on any ordered gene list

Does not require the choice of a gene selection threshold or the
explicit definition of a statistically significant marker set

Uses distribution-free, non-parametric, permutation-based test
procedures with increased statistical power

Incorporates the permutation of phenotype labels thereby
preserving the “biological” correlation structure of the markers

Takes into account multiple hypotheses testing of multiple gene

sets |

Less prone to false-positives than on the gene-level CSC




Many GO enrichment tools

Y VYV

YV V V VY

A\

GOStat,

GOrilla, Gene Ontology enRilchment analLysis and
visuaLizAtion tool

g:Profiler,
Metascape,
ToppGene,

WebGestalt - WEB-based GEne SeT AnaLysis
ToolKkit,

R packages, clusterProfiler,




Analysing effectively

Parallel scripts in Puhti




Analysing effectively: let the script do the
work for you

» The steps learned today are repeated to all the samples
in your dataset

* You don’t want to type the same commands several
times, and risk making mistakes between samples

» Some analysis steps take hours to complete (alignment,
read counting)

 Bit boring to just wait
» Thus: first test, then automate = write a (batch) script!
« At CSC, you can then run the analysis effectively on our

supercomputer Puhti

* Parallelization

W




Puhti 101

» Login with your username:
ssh <csc username>@puhti.csc.fi
» Move to your projects SCRATCH directory
« SCRATCH directories are shared for the project

« Make your own folder there!

« Don’t run analysis on your HOME directory or in the login
node

» We are running the same tools for several samples
« ="awkwardly parallel” task => “array job”
« Write a batch script (rnaseq_array_job_script.sh)

sbatch rnaseq array job script.sh

squeue -1 -u your username

» Modules: pre-installed tools are loaded in use with module

command
module load biokit
» Store data in Allas! (SCRATCH is cleaned)
cd /scratch/project XXXXXXX

mkdir rnaseq test yourname

)

th
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Array script

>

#!/bin/bash -1

#SBATCH --job-name=array_job

#SBATCH --output=array_job out %A %a.txt
#SBATCH --error=array _job _err %A _ %a.txt
#SBATCH --account=<project>

#SBATCH --partition=small

#SBATCH --time=02:00:00

#SBATCH --ntasks=1

#SBATCH --mem-per-cpu=4000

#SBATCH —cpus-per-task=2

#SBATCH --array=1-50

# run the analysis command
my prog data ${SLURM_ ARRAY TASK ID}.inp data ${SLURM_ ARRAY TASK ID}.out

+
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Design of experiments

SC




When planning an experiment, consider

» The number of biological replicates needed. Depends on

Biological variability and technical noise
Expression level, fold change and sequencing depth

» Sample pairing
» Sequencing decisions

Number of reads per sample (~sequencing depth)
Read length (longer is better)

Paired end or single end (PE is better)

Stranded or unstranded (stranded is better)

Batch effects




Relevant concepts

> Read depth = coverage
= how many reads per each nucleotide,

on average?
. It depends... 30X — 300X ? C=LN/G
«  With RNASeq we count o

reads per sample. 20-200 M ?

C stands for coverage

e G is the haploid genome length

* Read length? 75-300 bp? e L is the read length

e N is the number of reads

« Paired end, single end?

 Sequencing capacity = how many cycles, how many reads per flow cell,
how many lanes in the flow cell? => depends on the device.

CSC

« Heterogeneity of the sample material (cell line vs. tumor sample)




Coverage

» Whole Genome Sequencing (WGS):
» Genotype calls 35x, INDELs 60x, SNVs 30x
» RNASeq:

» Differential expression profiling 10-25 M reads, allele specific
expression 50-100 M

* Alternative splicing 50-100 M
 De novo assembly >100 M
» ChiP-Seq: 10-15 M (sharp peaks), 20-40 M (broad)

——
Genome

Coverage 5 3 2 0 1 4



Relevant concepts

« Read length = max. number of cycles

* Reads per flow cell

* Lanes per flow cell

* Multiplexing

« Paired end option

« Targeted sequencing = sequencing panels

The device

The question

* Requirement for coverage / read depth
« SNP, indels, de novo assembly, variant
discovery, novel mutation discovery,

expression analysis...
« Mitochondria? Highly expressing genes
active?

* Tumor sample, blood sample, model
organism, cell line...

» Possible contaminations?

 How many samples available?

Time, money, experience, availability? '

CSC




Technical vs. biological replicates

> Biological replicates are separate individuals/samples
* Necessary for a properly controlled experiment

» Technical replicates are repeated sequencing runs using
the same RNA isolate or sample

« Waste of resources?

« Can cause unnecessary variance reduction - increases
number of false positives

» Avoid mixing of biological and technical replicates!

+
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Technical vs. biological replicates

Distinction between technical and biological replicates is

fuzzy.
":?;:g:; in variations in chemistry varigtions in physics
0
= T T T @ B
!/ I (=
sample treatment RNA extract labelled, hybridisation hybridised scanned
fragmented cocktail array image
' RNA
Biological i Technical
replicates ! replicates

Where do we stand with cell lines? 1L

CsSC




Replicate number

» Publication quality data needs at least 3 biological
replicates per sample group.
» This can be sufficient for cell-cultures and/or test animals

» More reasonable numbers:
» Cell cultures / test animals: 3 is minimum, 4-5 OK, >7 excellent
« Patients: 3 is minimum, 10-20 OK, >50 good -
* Power analysis can be used to estimate sample sizes




How many reads per sample do | need?

» Depends on the transcriptome and what you want to investigate
 Differential expression 10-25 M reads
» Allele specific expression 50-100 M
« Alternative splicing 50-100 M
 De novo assembly >100 M
» More reads or more replicates?

Conesa et al. Genome Biology (2016) 17:13

DOI 10.1186/513059-016-0881-8 GenOme BIOIOgy

REVIEW Open Access

A survey of best practices for RNA-seq data @
analysis

Ana Conesa'?, Pedro Madrigal**, Sonia Tarazona®>, David Gomez-Cabrero®’®?, Alejandra Cervera'®,
Andrew McPherson'', Michat Wojciech Szcze$niak'?, Daniel J. Gaffney?, Laura L. Elo'?, Xuegong Zhang
and Ali Mortazavi'®'”

14,15




Read depth / number of reads per sample

» Some recommendations available
» Heterogeneous sample => more depth needed

* For example tumor samples or when there is a
doubt of contamination

» RNASeq: some highly expressed transcript may
hoard all the resources

» Targeted panels: how well are they targeting
» More depth or more replicates?




Balance sample groups across batches

» You can’t account for a batch effect if all your control samples
were run in one batch and the drug samples in the other

 DESeqg2 would give an error: "The model matrix is not full rank”
» Balance sample groups cross batches

Problem: You have 8 samples, 4 controls and 4 treated samples. You can only fit 4 samples in one
sequencing run, which means you will have 2 batches. How would you form the batches?

Option A: Option B:
sample batch treatment sample batch treatment
1 control 1 1 control
2 1 co 2 1 control
3 ontrol S 1 drug
4 1 control 6 1 drug
5 rug 3 2 contrl
6 2 dru 4 2 contr
2 drug 7 2 drug ‘
8 2 drug 8 2 drug See




Paired samples

» Use of matched samples reduces variance, as individual
variation can be tackled using a matched control

* Pre vs. post treatment samples
* Tumor vs. normal samples from the same patient

Problem: 6 patients, 2 samples from each. Enough resources to sequence only 6 samples.
Which option do you choose?

Option A:

Pre treatment
samples

Post treatment
samples




Pooling

» When possible, measure each sample on its own.

« If this is not possible (too expensive or not enough material),
samples can be pooled to reduce variance

» Risk: If some of the samples are outliers, the pool is unusable
» Make pools as similar as possible

- R




Pooling

» Make pools as similar as possible

» Avoid pooling of similar kinds of samples into
one pool

Problem: We have 9 control samples, but we need to pool 3 samples together.
6 samples are from females and 3 from males.

Option A:




Pooling

Something to consider:

What if some of your samples are outliers, or have a
contamination?

e tiEl l-ielClcie
[lj/

A\ A\
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Reference samples

» Don’t compare apples to oranges!

» Cancer sample vs. normal sample —where do
you get the “normal sample™?

« Same tissue, “healthy” parts from the same
patient?

« Same, healthy tissue from another patient?
» Similar tissue from the same patient?

* Blood sample from the same patient?

« Cell line?

+
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Getting started at CSC + other materials




Getting started at CSC

» Overview and links to manual pages:
https://research.csc.fi/accounts-and-projects

» Step 1. Create a user account

* Create a CSC account by logging in CSC's customer portal MyCSC
with Haka or Virtu.

» Step 2. Create or join a project

e to access Puhti, Mahti, Allas, cPouta, ePouta, Rahti, Kaivos and/or
IDA.

* A) Create a CSC project to access and invite users
« B) Ask project manager to invite you

> Step 3. Add service access for your project
* Only the project manager can add services.

Step 4. Apply for more resources/billing units, if needed l
Step 5. Renew your password annually

vV VYV
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https://research.csc.fi/bioscience-learning-materials

Learning Materials for
Bioscientists

Course materials, eLearning materials, tutorials and webinar
recordings for bioscientists.

New: Now also available: RNA-seq pipeline tutorial!

General skills:

e Migrating bioinformatics analyses from Taito to Puhti [course
materials]

e Data analysis with R [course material] [GitHub page]

¢ Python for Biosciences [course material]

¢ Using cPouta cloud for bioinformatics [course materials]

¢ Computing intensive bioinfomatics analysis on Taito [course
materials]

e Python environment in CSC computers [webinar recording]

¢ Introduction to base R [course material]

¢ Data visualisation using RStudio and ggplot [course material]

Application focussed:

¢ Single-cell RNA-seq data analysis [course material] [video
lectures] [GitHub page]

¢ RNA-seq data analysis [course material] [pipeline]

¢ Protein modeling with Discovery Studio [course material]

¢ VirusDetect pipeline [course material] [webinar recording]

. e Variant analysis with GATK [course material] [video lectures]

CSC material bank

Chipster courses

—— Chipster &
- X

Open source platform for data analysis

Chipster Tutorials
Youtube playlists

Introdu°ipster

CSC



Chipster: Easy-to-use high-throughput data

analysis tool

e0e® < e

W (10) Maria L... Presentations CSC_Finnis...

Chipster Analyze Sessions Manual Contact
Files

Workflow List Q

2, Add file ~

chipster.csc.fi

CSC Solutio...

Tools

NGS  Microarray  Misc

Category

Quality control
Preprocessing
Utilities

e Matching sets of genomic

regions

e Alignment

e Variants

e Small RNA-seq
Single cell RNA-seq
ChIP- and DNase-seq

® 16S rRNA sequencing

o CNA-seq

File
inner_distance.pdf eee

PDF Details

a]a/
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Chipster RNAseq-b: J
csc

Chipster

Open source platform for data analysis
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the DESeq2 Bioconductor package.
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and phenodata file using the tool
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Recent advances: single-cell RNAseq




New directions: single cell RNA-seq

> (Bulkl RNA-seq is very much in use, but scRNA-seq

technology is warmly welcomed in many areas

» With scRNA-seq, cellular heterogeneity can be studied

Single-Cell Analysis

=

Tissue

~

Bulk Analysis

i

Single-Cell input

V

Bulk RNA input

—

A

NN %

Each cell type has a distinct
expression profile

i~

Average gene expression

from all cells

A

Reveals heterogeneity
and subpopulation
expression variability of
thousands of cells

?

Cellular heterogeneity

masked |
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Different technologies for capturing single-

cell transcriptomes

Encapsulation of cells RNA capture
Drop-Seq
y oil
""‘:‘é Barcoded RNA capture Barcoded single-cell
\g/ beads ’ = 1 transcriptomes
10X {} °
C4* s [ONOERG=— e
b (@)
Indrop Cells /
(@)
. i¢ >
"\
Seq-Well

Slide by Heli Pessa

Library prep and
sequencing

-millions of the same
cell barcode per bead
-48 different molecular
barcodes (=UMIs)

per bead

Barcoded primer bead

TTT(T27) -

PCR Cell UMI
handle barcode




Single Cell RNA Sequencing Workflow

RT& Second-strand
Synthesas

Solid Tissue Dissociation Single Cell Isolation RNA cDNA

Amplified V}
RNA

Cell Types = S\ v

Identification

RT PCR
Clustering "\_
CAAGTTCCTACAGCTA /
AGTCCATGCCCATCOG
AATCGGACTTCAGOCT \ J

Sl

ACOGTTACATCAACAG /J r/

ATTOGATAACGACCAT
Single-cell Sequencing Sequencing Library Amplified cDNA
Expression Profiles

CATGCCATTGACGATT

+

https://hemberg-lab.github.io/scRNA.seq.course/introduction-to-single-cell-rna-seq.html csc




RNAseq vs scRNAseq data

RNAseq: Sample 1 | Sample2 | Sample  Control | Control | Control
« 1 table, genes x samples 3 L 2 3
. Compare sample groups GeneA |5 4 7 24 23 22
Gene B 50 54 52 12 12 11
GeneC | 5 4 5 4 4 5
Gene D | 33 34 32 21 32 43
scRNAseq:

e Tables = samples

* Genes x cells ( -> very wide tables)

* Lots of zeros

* Find clusters of similar cells in samples
* Compare clusters

I T TN P T T P

Gene A
P—— = - Cell 1 Cell 2 Cell3 |Cell4 |Cell5 |Cell6 |.. |
Gene C 5 4 Gene A
Gene D 1 , GeneB 50 51 52 12 12 1
Gene C 5 0 5 0 0 1
Gene D 0 1 2 0 7 0



Feedback

» We would very much value your feedback!
* You will receive a course feedback link to your e-mail




