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Abstract

A simple method for calculating surface areas and surface averages of contours determined
from a three dimensional mesh of points is presented. After a polygonal (triangular) mesh of
the desired surface is computed, the area of the best-approximating spherical triangle to the
vertices and vertex normals of the mesh is calculated. If the vertex normals are degenerate,
the simple planar approximation is used. If the spherical approximation is not satisfactory, as
measured by the difference in the radii from each vertex, a new point is calculated based on
the circumcenter of the triangle. This process yields three triangles, whose areas are calculated
as above. The method is implemented via the gOpenMol molecular graphics program.
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1 Introduction

Problems which arise frequently in computational chemistry which require calculation of the
area of a contour surface of some calculated property of a molecule (e.g. electron density).
These may be simple area calculations, or they may require the averaging of some other
property (e.g. electrostatic potential) over the contour surface. For a dense enough contour
mesh, these area calculations can be performed by tessellating the contour with closed polygons
(usually triangles), and taking the combined area of these polygons as the contour surface area.
Property averages then require calculation of the value of the property to be averaged at some
characteristic point in or near the corresponding triangle.

The calculation of the mesh may be rather expensive, and the criterion for “dense enough”
is often unknown before the calculation is performed. Thus it is desirable to move beyond
the planar approximation, and at the same time to find a method for inserting additional
polygons into the mesh when necessary. In addition, modern graphics acceleration hardware is
very adept at culling degenerate polygons (those with multiple occurrences of the same vertex);
contour generation algorithms often exploit this ability by not checking for degeneracy.

2 Method

The surface area calculation is straightforward, and is illustrated for a single triangle in Fig.
??. The vertices of the triangle will intersect the sphere along a chordal circle. The center of
this circle is clearly the circumcenter of the triangle. The area of the spherical section over
the triangle can be readily calculated from spherical trigonometry if the appropriate radius is
known. It remains to find a good approximation to the radius of the sphere.

There is additional information available from the mesh in the form of vertex normals.
These normals are not, in general, consistent with any sphere approximation based only on
the vertices. The normal to the triangle plane ~n and each of the three vertex normals

{
~a,~b,~c

}

must be radial for a consistent sphere to be drawn; this results in an overdetermined system,
even for nondegenerate triangles.

We write the best-fit normal ~N in terms of a three-vector ~Λ = {λ, µ, ν} and the vertex
normals:

~N = λ~a + µ~b + ν~c

. If the three vertices of the triangle lay on a sphere with the vertex normals oriented radially,
the central normal (to which ~N is an approximation) makes equal angles with all three vertex
normals. If the vertices lay on a sphere in a plane normal to the central normal, then ~N = ~n.
In addition, we require that ~N be normalized.

In terms of the elements of ~Λ, this yields three equations and one constraint.

f0(~Λ;~n,~a,~b,~c) = λ2 + 2λµ(~a ·~b) + 2λν(~a · ~c) + µ2 + 2µν(~b · ~c) + ν2 − 1 (1)
f1(~Λ;~n,~a,~b,~c) = λ(~n · ~c) + µ(~n · ~c) + ν(~n · ~c)− 1 (2)

f2(~Λ;~n,~a,~b,~c) =
λ(~a ·~b) + µ + ν(~b · ~c)
λ + µ(~a ·~b) + ν(~a · ~c)

− 1 (3)

f3(~Λ;~n,~a,~b,~c) =
λ(~a · ~c) + µ(~b · ~c) + ν

λ + µ(~a ·~b) + ν(~a · ~c)
− 1 (4)
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which each have optimal value 0. The first equation is a true constraint equation. A solution
to Eqs. (1-4) is determined by a Gauss-Newton method similar to that described by Gullikson,
Xx, and Wedin, based on the modified QR factorization. This method allows the other three
equations to be weighted to lend precedence to either the vertex normals or the triangle normal.
We briefly explore such weighting in Section ??; normally these equations are equally weighted.

If the vertex normal triple is degenerate (which includes the case of degenerate triangles,
but is more general), this will be manifested by the Jacobian for Eqs. (1-4) being rank-deficient.
Rather than attempt regularization, we recognize that this condition has no good solution, and
either generate a new mesh point from the circumcenter or revert to a planar approximation.

Once ~N has been determined, the radius and apex of the best-fit spherical triangle are
calculated. The radius for each vertex and the height of the apex for each vertex are determined
as illustrated in Fig. ??. The average radius R̄ is calculated. The apex calculation can also
be done by finding the point along the vector parallel to ~N passing through the circumcenter
of the planar triangle which lies on the contour. This latter method is advantageous when
calculating average values of properties; otherwise we use the average of the apices calculated
using the geometric construction of Fig. ??. Once the apex has been determined, the triangle
is translated so that the center of the sphere lies at the origin. This simplifies the rest of the
calculation because the normals must be radial. The surface area of the spherical triangle is
then calculated. First the values cosα, cosβ, and cos γ are calculated from the dot products
of the normals. The angles A, B, and C can then be calculated via

cosA =
cosα− cosβ cos γ

sinβ sin γ

cosB =
cosβ sin γ − sinβ cos γ cosA

sinα

cosC =
sinα cotβ − sinC cotB

cosα

We calculate the sines directly from cosines as sin θ =
√

1− cos2 θ; this choice forces the angles
to lie in [0, π]. The area of the spherical triangle is then R̄2(A + B + C − π).

2.1 Inserting Mesh Points

If the spherical approximation is inadequate (either by degenerate normals or by large differ-
ences in the radii calculated at the three vertices, we increase the mesh by a point related to
the circumcenter. We start with the approximate normal at the circumcenter ~N . In the case
of degenerate normals, we take ~N = ~n. We then locate, using a finite differencing Newton
method, the point along the vector parallel to ~N passing through the circumcenter which lies
on the contour. This point and the three original vertices define three triangles, which are
treated as above. This process is continued recursively until an adequate spherical approxi-
mant is found. If the planar area of the triangle is below some predetermined threshold, or
the number of subdivisions reaches some limit, we take the planar area approximation for that
triangle.
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2.2 Calculating average quantities

To calculate an average quantity, we evaluate the quantity to be averaged at the apex of the
spherical triangle. The average quantity is then calculated by

Q̄ =
∑

t σ(t)q(t)∑
t σ(t)

where Q̄ is the average quantity being sought, σ(t) is the surface area of the tth triangle, and
q(t) is the function value calculated for the triangle. In the lowest-order approximation, q(t) is
equal to the quantity evaluated at the apex of the approximating spherical triangle, four-point
Gaussian cubature can be used over the whole triangle to give a better approximation.

3 Examples

The routine has been tested on several example problems.

3.1 Surface area of a molecule

Defining the surface area of an isolated molecule is difficult as the extent of the electron orbitals
is nominally infinite; an arbitrary electron density cutoff is necessary. We have used the routine
on several small molecules and several electron density cutoffs; some examples are shown in
Fig. ??, and the results summarized in Table ??. We have included results taken with several
grid densities; higher grid densities lead to denser initial triangulations of the surface. The
routine performs rather well, allowing coarser meshes to be refined on the fly. This offers a
significant time savings over calculating finer meshes.

3.2 Average electrostatic potential

We have used the routine to calculate the average electrostatic potentials over the surface areas
shown in Fig. ??. The results for single point and four-point Gauss cubature are shown in Table
??. Again, the advantage of self refinement is apparent, as electrostatic potential calculation is
expensive. We evaluate the potential only at the points needed for the averaging. This defines
a thin shell of electrostatic potential values around the contour, which represents about 4% of
the total number of grid points.

3.3 Accessible surface area

Calculating the solvent-accessible surface area is a common problem in biochemistry. However,
empirical potential formulas can be easily used to calculate a grid of potentials for the solvent-
molecule complex. The problem then reduces to finding the surface area of a potential contour
(typically an energy between the minimum and 0). We illustrate this for the system....

3.4 Accessible surface area of a single residue

Often, it is desirable to find the surface area associated with a single residue or set of residues
on a protein.
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4 Influence of user-determined parameters

There are a number of preselected thresholds in the routine. In this section, we explore the
influence of some of them.

4.1 Area cutoff

4.2 Function weighting

4.3 Maximal radial variation

4.4 Maximal recursion depth

5 Conclusion
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