
Taito User Guide

Autogenerated from HTML pages with pandoc

12/02/19

Contents
Taito User Guide 4

Three things you should know before you start using Taito . 4

1.1 Taito supercluster 4
1.1.1 User policy . 4
1.1.2 Hardware . 5

1.2 Operating system and shell environment 7

1.3 Connecting to Taito 7

1.4 Monitoring the load in Taito 8

1.5 Disk environment 8

1.5.1 Home directory . 9
1.5.2 Work directory . 10
1.5.3 Software installation directory . 11
1.5.4 Monitoring disk usage . 12

2. The module system in Taito 13

2.1 Basic usage 13
. 14

2.1.1 Finding modules . 14
. 15

2.1.2 Solving conflicts . 15

2.2 Advanced topics 16
2.3.1 Module hierarchy . 16
2.2.2 Using your own module files . 16

3. Batch jobs 16

3.1 Constructing a batch job file 17
3.1.1 Batch Job Script Wizard . 17
3.1.2 Structure of a batch job file . 18
. 20

3.1.3 Queues and resource requests . 20
. 22

3.1.4 Choosing between processor architectures in hugemem queue 22
3.1.5 Using Scientist’s User Interface to execute batch jobs . 22

3.2 Using SLURM commands to execute batch jobs 23
3.3 Parallel batch jobs . 25

3.3.1 Threads-based parallel jobs . 25
3.3.2 MPI-based parallel jobs . 26

3.3.3 Interactive MPI-parallel jobs . 27
3.3.4 Choosing between Sandy Bridge or Haswell nodes . 27

3.4 Interactive batch jobs 28

3.5 Array jobs in Taito 29
3.5.1 Defining an array job . 29

1

3.5.2 Simple array job example . 29
3.5.3 Using a file name list in an array job . 31
3.5.4 Using array jobs in workflows with sbatch_commandlist . 31
3.6 Profiling applications using Allinea Performance Reports . 32

4. Compiling environment 33

4.1 Available Compilers 34

4.2 Mathematical libraries 36
4.2.1 MKL (Intel Math Kernel Library) . 36
4.2.2 Usage of MKL in Taito . 37

4.3 Using MPI 38
4.3.1 Compiling and linking MPI programs on Taito . 39
4.3.2 Include files . 39

4.4 Shared memory and hybrid parallelization 39
4.4.1 How to compile . 39
4.4.2 Running OpenMP programs . 40
4.4.3 Hybrid parallelization . 41
4.4.4 Binding threads to cores . 42

4.5 Debugging Parallel Applications 42
4.5.1 TotalView debugger . 42
4.5.2 Debugging an Application . 42
4.5.3 Very basic features of Totalview . 43
4.5.4 Debugging running application . 43
4.5.5 Documents . 44

4.6 Processor architecture specific compiling 44
4.6.1 Intel compiler environment . 44
4.6.2 GNU compiler environment . 45

4.6.3 Login nodes . 45
4.7 Profiling Applications with Intel Tools . 45

4.7.1 Serial and Multithreaded Applications . 45
4.7.2 MPI Applications . 46

5. User’s own software installations 47
Example 1. Installing your own version of MCL program . 47
Example 2. Installing and using your own Perl module in Taito 47
Example 3. Installing and using your own Python module in Taito 47

6. Using Taito-GPU 47
6.1 Taito-GPU hardware and operating system . 47
6.2 Getting access to Taito-GPU . 48
6.3 Module and storage environment on Taito-GPU . 48
6.4 Compiling & linking GPU-programs . 48

6.4.1 Introduction . 48
6.4.2 CUDA . 49
6.4.3 CUDA and MPI . 49
6.4.4 OpenACC . 50

6.5 Running GPU-programs 50
6.5.1 Introduction . 50
6.5.2 Running under GNU environment on one GPU . 50

2

6.5.3 Running under PGI environment on one GPU . 51
6.5.4 Running under GNU environment on multiple GPUs . 51
6.5.5 Using the SSD scratch space . 52

6.6 Deploying GPU + MPI-programs 53

6.7 Profiling GPU-programs 54
6.7.1 Introduction . 54
6.7.2 Using nvprof . 54

7. Using Taito-shell for running interactive jobs in Taito 56
7.1 What is Taito-shell . 56
7.2 Using Taito-shell . 57

7.2.1 Obtaining a user id . 57
7.2.2 Logging in . 57
7.2.2.1 Logging in via ssh . 57
7.2.2.2. Logging in via NoMachine . 58
7.2.3 Submitting batch jobs from Taito-shell . 58

. 58
7.3 Taito-shell FAQ . 58

7. Using Taito-shell for running interactive jobs in Taito 58
7.1 What is Taito-shell . 58
7.2 Using Taito-shell . 59

7.2.1 Obtaining a user id . 59
7.2.2 Logging in . 59
7.2.2.1 Logging in via ssh . 59
7.2.2.2. Logging in via NoMachine . 60
7.2.3 Submitting batch jobs from Taito-shell . 60

. 60
7.3 Taito-shell FAQ . 60

7. Using Taito-shell for running interactive jobs in Taito 60
7.1 What is Taito-shell . 60
7.2 Using Taito-shell . 61

7.2.1 Obtaining a user id . 61
7.2.2 Logging in . 61
7.2.2.1 Logging in via ssh . 62
7.2.2.2. Logging in via NoMachine . 62
7.2.3 Submitting batch jobs from Taito-shell . 62

. 63
7.3 Taito-shell FAQ . 63

7. Using Taito-shell for running interactive jobs in Taito 63
7.1 What is Taito-shell . 63
7.2 Using Taito-shell . 64

7.2.1 Obtaining a user id . 64
7.2.2 Logging in . 64
7.2.2.1 Logging in via ssh . 64
7.2.2.2. Logging in via NoMachine . 64
7.2.3 Submitting batch jobs from Taito-shell . 64

. 65
7.3 Taito-shell FAQ . 65

3

Taito User Guide

The super cluster taito.csc.fi was taken in use at CSC on 2013. This server is intended for serial and
parallel computing tasks that utilize less that 256 computing cores. This guide focuses on the most essential
information related to the supercluster taito.csc.fi. New customers of CSC should use this guide together with
the CSC Computing environment user guide that discusses issues that apply for all the computing servers
servers of CSC (e.g. Linux basics and data transport).

Three things you should know before you start using Taito

• Registering as CSC customer allows you to login to Taito, but if you start using Taito you should
join a computing project or open a new computing project.

• When you log in to address taito.csc.fi you end up to one of the login nodes of Taito cluster. These
login nodes are not intended for heavy computing but for managing your files and batch jobs. Because
of that all processes that take more than 1 CPU hour will automatically be killed. Please use batch
jobs or taito-shell.csc.fi for all heavy computing.

• Your home directory has very limited capacity and it should not used for working with large datasets.
Please use your work directory ($WRKDIR) when you work with large datasets and HPC-archive
storage system to store and backup the data that you need to preserve.

1.1 Taito supercluster

1.1.1 User policy

The Taito supercluster (taito.csc.fi) is intended for serial and medium sized parallel tasks as well as jobs that
require a lot of memory. Researchers that want to use Taito should 1) register as CSC users and then 2)
apply for a computing project. This registration process is described in the chapters 1.2.1 and 1.2.2.2 of
the CSC computing environment user guide.

A computing project at CSC has a common computing quota that can be extended by application. Use of
Taito or any other server will consume the computing quota granted to the project. One core hour in
Taito consumes 2 billing units from the computing quota of the project.

The Taito users are allowed to submit up to 1024 simultaneous batch jobs to be executed. The maximum
size of a single job is at most 448 compute cores using 672 CPUs.

Table 1.1 Available batch jobs queues in supercluster taito.csc.fi.

Queue Number of cores Maximum run time
serial (default) 24 (one node) 3 days
parallel 672 (28 nodes) 3 days
longrun 24 (one node) 14 days
test 32 / 48 (two nodes) 30 min
hugemem 40 (one haswell hugemem node) 7 days/14days

4

In Taito you don’t need to sent the scaling test results of your parallel code to CSC. However, you should
still make sure that you are using the resources e�ciently i.e. that your code - with the used input - does
scale to the selected number of cores. The rule of thumb is that when you double the number of cores, the
job should to run at least 1.5 times faster. If it doesn’t, you should use less cores. Note that scaling depends
on the input (model system) as well as the used code, so you may need to test separately for scaling with the
same code for di�erent model systems. If you are unsure, contact CSC Service Desk.

1.1.2 Hardware

Taito (taito.csc.fi) is a 16 cabinet HP cluster based on commodity o�-the-shelf building blocks. The theoretical
peak performance of the cluster, calculated on the aggregate performance of the computing nodes, is about
600 TFlop/s.

Sandy bridge nodes

As a preparation for the installallation of the new cluster environment, the older part of Taito, consisting of
576 Sandy Bridge nodes, was removed in January 2019.

Haswell nodes

The Haswell processors comprise several components: twelve cores with individual L1 and L2 caches, an
integrated memory controller, three QPI links, and an L3 cache shared within the socket. The processor
supports several instructions sets, most notably the Advanced Vector Extensions 2 (AVX2) instruction set;
however, older instructions sets are still supported. Each Haswell core has dedicated 32KB of L1 cache, and
768 KB of L2 cache. The L3 cache is shared among the processors, and its size is 30 MB. Most of the Haswell
nodes (397) have 8 slots of 16GB DDR4 DIMMs, operating at 2133 MHz, for a total of 128GB per compute
node. This means that there are 5,3 GB of memory available per core. There are also ten Haswell-equipped
nodes with 16 modules of 16 GB 2133 MHz DIMMs, that is 256 GB of DDR4 memory per node, and 10,7
GB per core.

Hugemem nodes

For jobs requiring very large memory, Taito includes six hugemem nodes each having 1,5 TB of memory:

• two HP Proliant DL560 nodes, with 2.7Ghz Sandy Bridge processors with 32 cores (four eight node
sockets) and 2 TB of local temporary storage space.

• four Dell R930 nodes, with 2.8Ghz Haswell processors with 40 cores and 2,6 TB of local SSD based
fast temporary storage space.

Login nodes

In addition to the computing nodes, Taito has four login nodes, two of which (taito-login3 and taito-login4)
are used for logging into the system, submitting jobs, I/O and service usage. The tow other login nodes act
as the front ends for the GPGPU and MIC hardware linked to the cluster. The login nodes are HP Proliant
DL380 G8.

5

Interconnect

Communication among nodes and to the storage is done by Infiniband FDR fabric, which provides low latency
and high throughput connectivity. High speed interconnect is provided by 58 Mellanox Infiniband FDR
switches with 36 ports each, and by the Infiniband HCAs installed on each computing node. The network
topology for the cluster is 4:1 pruned tree fabric.

Table 1.2 Configuration of the Taito.csc.fi supercluster. The aggregate performance of the system is 600
TF/s.

Node type
Number of
nodes Node model

Number of
cores / node

Total
number of
cores

Memory /
node

Sandy Bridge
login node

4 HP Proliant
DL380 G8

16 64 64 / 192 GB

Haswell
compute node

397 HP Apollo
6000 XL230a
G9

24 9528 128 GB

Haswell big
memory node

10 HP Apollo
6000 XL230a
G9

24 240 256 GB

Sandy Bridge
big memory
node (these
nodes has been
removed)

16 HP SL230s G8 16 256 256 GB

Sandy Bridge
huge memory
node

2 HP Proliant
DL560

32 64 1,5 TB

Haswell huge
memory node

4 Dell R930 40 160 1,5 TB

The following commands can give some useful information from the whole Taito system or from the current
node a user is logged in.

To get a quick overview of all Taito compute node status use the following command:

sinfo -Nel

The above command prints information in a compute node oriented format. Alternatively, you can get the
information in in a partition/queue oriented format with command:

sinfo -el

For information about the disk systems one can use the following command:

df -h

Details about the available processors on the current node can be checked with:

cat /proc/cpuinfo

And details about the current memory usage on the node is shown with:

cat /proc/meminfo

6

1.2 Operating system and shell environment

Taito is a Linux cluster. The login nodes are based on the RedHat Enterprise Linux 6 (RHEL6) distribution,
while the computing nodes use CentOS 6, which is a free distribution entirely derived from RHEL6. During
the lifetime of the cluster, we aim to keep the software packages up to date following the minor releases of
the operating system, as long as this preserves the necessary compatibility with the previous versions. The
computing nodes have identical software configuration. The same applies to the login nodes. The system
software set installed on the login and computing nodes is relatively minimal but it o�ers a wide selection of
libraries and development packages to compile your own software. In general, all the libraries available on
the computing nodes are also available on the login nodes. You can inspect what packages are installed on
Redhat based servers using the following command:

rpm -qa

This command is also useful to find out what is the version of an installed package. Other options can be
given to the rpm command to inspect the system configuration. Alternatively, locate and find are also
good tools for inspecting the software configuration of a system. Note that users can’t use rpm command to
install software to Taito.

The system packages will be updated during the lifetime of the system without any previous notification.
Therefore, we suggest using the module system to load specific library versions and software supported by
CSC, or install your own version in $USERAPPL directory. In this way your software dependencies will be
safely preserved.

As a general rule, x86-64 binaries should be used for software installed on Taito. “x86-64” is the 64-bit
extension of the x86 instruction set.

The default and recommended command shell in Taito is bash. Previously CSC has been using tcsh as the
default command shell and you can still continue to use tcsh shell in Taito too. If you want to change your
default shell in Taito, please contact servicedesk@csc.fi.

When a user logs into Taito, the bash start-up script defines a set of CSC specific variables defining the
location of the user specific directories: $WRKDIR, $HOME, $TMPDIR and $USERAPPL. Further, rm, cp
and mv commands are aliased so that by default they ask for permission before removing or overwriting and
existing files. Also the clobber options are set up so that output forwarding does not overwrite an existing file.

If you wish to add more settings or aliases that are automatically set-up when you log in, you should add
the corresponding linux commands to the end of the bash set-up file .bashrc that is located in your home
directory.

The Taito system supports UTF-8 character encoding, which makes it possible to represent every character
in the Unicode character set. UTF-8 was not supported on older CSC systems, so care should be taken when
sharing files with other systems.

Compiling programs should be done in the $TMPDIR, which is login node specific instead of $WRKDIR or
$HOME which reside on Lustre file system. Using $TMPDIR is much faster for compilation purposes than
Lustre and avoids performance degradation for computing jobs.

1.3 Connecting to Taito

To connect Taito, use terminal programs like ssh (linux, MacOSX) or PuTTY (Windows), which provide
secure connection to the server. If you are not able to use a suitable terminal program in your local computer

7

you can use the SSH console tool in Scientist’s User Interface.
For example, when using the ssh command the connection can be opened in the following way:

ssh taito.csc.fi -l username

If you wish to use applications that use graphics or you want to suspend you session after the day, we
recommend that you use the NoMachine Remote Desktop connection instead of direct terminal connections.

The Taito supercluster has two login nodes (taito-login3.csc.fi and taito-login4.csc.fi). When you open a
new terminal connection using the server name taito.csc.fi you will end up to one of these login nodes. You
can also open the connection directly to two of the login nodes (taito-login3.csc.fi and taito-login4.csc.fi) if
needed:

ssh taito-login4.csc.fi -l username

Note that login nodes are not intended for heavy computing but for submitting and managing batch
jobs. If you wish to do interactive computing, instead of submitting batch jobs, you can open connection to
taito-shell (see chapter 8.)

ssh taito-shell.csc.fi -l username

More details about connecting to the computing severs of CSC can be found from the CSC Computing
Environment User Guide chapter 1.3.

1.4 Monitoring the load in Taito

Server information, current CPU load, CPU load history and job count history of Taito supercluster and
other CSC’s servers can be checked with Host Monitor tool of CSC’s Scientist’s User Interface web portal.
In addition, signing in o�ers additional features such as details of all running batch jobs:

• Host Monitor (CSC account required, full access)
• Host Monitor (no authentication, limited functionality)

Once you have logged in to Taito, you can check load status also with commands:

squeue

and

sinfo

These commands and tools show the jobs that are currently running or waiting in the batch job system.

1.5 Disk environment

The CSC supercomputing environment allows researchers to analyse and manage large datasets. Supercluster
taito.csc.fi and supercomputer sisu.csc.fi have a common disk environment and directory structure where on
CSC you can work with datasets that contain several terabytes of data. In Taito (and Sisu) you can store
data in several personal disk areas. The disk areas available in Taito are listed in Table 1.2 and Figure 1.2
below. Knowing the basic features of di�erent disk areas is essential if you wish to use the CSC computing
and storage services e�ectively. Note that in Taito all directories use the same Lustre-based file server (except

8

$TMPDIR which is local to each node). Thus all directories are visible to both the front-end nodes and the
computing nodes of Taito.

In addition to the local directories in Taito, users have access to the CSC archive server, HPC archive, which
is intended for long term data storage. HPC archive server is used through the iRODS software. Projects
that have applied cPouta access can also use the CSC Object Storage service that can be be used as common
storage area for CSC computing environment, Virtual Machines in cPouta and local computing environment.
(See CSC Computing environment user’s guide Chapter 3.2 and Chapter 3.3 for more information

Directory or storage area Intended use Default quota/user Storage time Backup
$HOME Initialization scripts, source codes, small data files.

Not for running programs or research data.
50 GB Data will be deleted 90 days after closing the account Yes

$USERAPPL Users’ own application software. 50 GB Data will be deleted 90 days after closing the account Yes
$WRKDIR Temporary data storage. 5 TB 90 days No
$TMPDIR Temporary users’ files, scratch, compiling. 2 days** No
project Common storage for project members. A project can consist of one or more user accounts. On request. Data will be deleted 90 days after closing the project No
HPC archive* Long term storage. 2,5 TB Permanent Yes
Object Storage Platform independed data stotrage 1 TB/ project Yes No

*The HPC-archive server is used through iRODS commands, and it is not mounted to Taito as a directory.
** This applies to the files on the login node $TMPDIR. The files in compute node $TMPDIR are kept for
the duration of the batch job and deleted immediately after it.

The directories listed in the table above can be accessed by normal linux commands, excluding the archive
server, which is used through the iRODS software. The $HOME and $WRKDIR directories as well as the
HPC archive service can also be accessed through the MyFiles tool of the Scientist’s User Interface WWW
service. The $USERAPPL is a subdirectory of $HOME.

When you are working on command line, you can utilize automatically defined environment variables that
contain the directory paths to di�erent disk areas (excluding project disk for which there is no environment
variable). So, if you would like to move to your work directory you could do that by writing:

cd $WRKDIR

Similarly, copying a file data.txt to your work directory could be done with command:

cp data.txt $WRKDIR/

In the following chapters you can find more detailed introductions to the usage and features of di�erent user
specific disk areas.

1.5.1 Home directory

When you log in to CSC, your current directory will first be your home directory. Home directory should be
used for initialization and configuration files and frequently accessed small programs and files. The size of the
home directory is rather limited, by default it is only 50 GB, since this directory is not intended for large
datasets.

9

The files stored in the home directory will be preserved as long as the corresponding user account is valid.
This directory is also backed up regularly so that the data can be recovered in the case of disk failures.
Taito and Sisu servers share the same home directory. Thus if you modify settings files like .bashrc, the
modifications will a�ect both servers.

Inside linux commands, the home directory can be indicated by the tilde character (~) or by using the
environment variable, $HOME. Also the command cd without any argument will return the user to his/her
home directory.

1.5.2 Work directory

The work directory is a place where you can temporarily store large datasets that are actively used. By default,
you can have up to 5 terabytes of data in it. This user-specific directory is indicated by the environment
variable, $WRKDIR. The Taito and Sisu servers share the same $WRKDIR directory.

The $WRKDIR is NOT intended for long term data storage. Files that have not been used for 90 days will
be automatically removed. If you want to keep some data in $WRKDIR for longer time periods you can
copy it to directory $WRKDIR/DONOTREMOVE. The files under this sub directory will not be removed
by the automatic cleaning process. Please note that the DONOTREMOVE directory is not intended for
storing data but to keep available ONLY such important data that is frequently needed. Backup copies are
not taken of the contents of the work directory (including DONOTREMOVE directory). Thus, if some files
are accidentally removed by the user or lost due to physical breaking of the disk, the data is irreversibly lost.

Please do not use touch command particularly if you have lot of files because it is metadata heavy operation
and will impact $WRKDIR performance for all users.

$WRKDIR F.A.Q.

• Q: Can I check what files the cleaning process is about to remove from my $WRKDIR directory?
A: You can use command show_old_wrkdir_files to check the files that are in danger to be removed.
For example the commands below lists the files that are are older than 83 days and thus will be removed
after the next seven days.

show_old_wrkdir_files 83 > files_to_be_removed
less files_to_be_removed

The first command produces the list and writes it into a file. Please bear in mind that producing the
list is a heavy operation so do it only when needed and refer to the file instead.

• Q: I’ve a zip/tar which I’ve extracted and file dates are old, are those files removed immediately?
A: No, extracted files will have 90 days grace time.

• Q: I’ve old reference data which I need for verification often. Are those removed?
A: All files which have been accessed within 90 days are safe (read, open, write, append, etc.). Command:
stat filename will show timestamps.

• Q: How do I preserve an important dataset I have in $WRKIR?
A: Make a compressed tar file of your data and copy it to HPC archive (see chapter 3.2 of the
CSC Computing environment user guide).

10

1.5.3 Software installation directory

Users of CSC servers are free to install their own application software on CSC’s computing servers. The
software may be developed locally or downloaded from the internet. The main limitation for the software
installation is that user must be able to do the installation without using the root user account. Further, the
software must be installed on user’s own private disk areas instead of the common application directories like
/usr/bin.

The user application directory $USERAPPL is a directory intended for installing user’s own software. This
directory is visible also to the computing nodes of the server, so software installed there can be used in batch
jobs. Unlike the work directory, $USERAPPL is regularly backed up.

Sisu and Taito servers have separate $USERAPPL directories. This is reasonable: if you wish to use the same
software in both machines you normally you need to compile separate versions of the software in each machine.
The $USERAPPL directories reside in your home directory and are called: appl_sisu and appl_taito. These
directories are actually visible to both Sisu and Taito servers. However, in Taito the $USERAPPL variable
points to $HOME/appl_taito, and in Sisu to $HOME/appl_sisu.

11

Figure 1.2 Storage environment in Sisu and Taito computers.

1.5.4 Monitoring disk usage

The amount of data that can be stored to di�erent disk areas is limited either by user specific quotas or by
the amount of available free disk space. You can check your disk usage and quotas with the command:

quota

The quota command shows also your disk quotas on di�erent areas. If the disk quota is exceeded, you cannot
add more data to the directory. In some directories, the quota can be slightly exceeded temporarily, but after
a so-called grace period, the disk usage must be returned to the accepted level.

12

When a disk area fills up, you should remove unnecessary files, compress existing files and/or move them to
the archive server. If you have well-justified reasons to use more disk space than what your quotas allow, you
should send a request to the CSC resource manager (resource_at_csc.fi).

When one of your directories is approaching the quota limit, it is reasonable to check which files or folders
take up most space. To list the files in your current directory ordered by size, give command:

ls -lSrh

Note however, that this command does not tell how much disk space the files in the subdirectories use. Thus
it is often more useful to use the command du (disk usage) instead. You can, for example, try command:

du -sh ./*

This command returns the size of each file or the total disk usage of each subdirectory in your current
directory. You can also combine du with sort to see what file or directory is the largest item in your current
directory:

du -s ./* | sort -n

Note that as the du command checks all the files in your current directory and running the command may in
some cases take several minutes.

2. The module system in Taito

Managing the software environment of a cluster with big user base is a complicated task. One have to take
into account several, often contradictory, requirements set by di�erent applications, compilers and libraries.
For example, it is often necessary to have access to older versions of an application, or to have a library
configured with di�erent options for di�erent applications. Setting up a working environment for the user is
very di�cult when you have several versions of hundreds of applications and libraries. The situation is also
di�cult for the users looking for a particular application or library.

Environment modules provide a convenient way to dynamically change the user’s environment so that di�erent
compiler suites and application versions can be used more easily. Modules system modifies the environment
variables of the user’s shell so that the correct versions of executables are in the path and linker can find the
correct version of needed libraries. For example, the command mpicc points to di�erent compilers depending
of the loaded module. Modules system also provides extensive search commands that can be used to find
suitable software modules from the list of installed packages.

Taito uses a recently developed version of environment modules called Lmod. It is developed at Texas
Advanced Computing Center (TACC) and it is implemented using Lua programming language. More technical
details can be found from the Lmod homepage. Those who are familiar with the environment modules systems
used in Sisu should note that the Lmod significantly di�ers from Sisu’s implementation.

2.1 Basic usage

The syntax of the module commands is:

13

module command module-name

The currently loaded modules are listed with command:

module list

For general module information one uses command module help. For example, to get more information about
loaded module intel, one can use command:

module help intel

New modules can be loaded to your environment using load command, for example the trilinos module can
be loaded using command:

module load trilinos

Note that you can only load modules that are compatible with other modules that you have loaded. That is,
you can not load modules that are conflicting with previously loaded modules, or modules that depend on
modules that have not been loaded.

Modules that are not needed or that are conflicting with other modules can be unloaded using unload
command:

module unload mkl

Table 2.1 Most commonly used module commands.

Module command Description
module help modulename Show information about a module.
module load modulename Loads the given environment module.
module unload modulename Unloads the given environment module.
module list List the loaded modules.
module avail List modules that are available to be loaded.
module spider name Searches the entire list of possible modules.
module swap module1 module2 Replaces a module with a second module.

2.1.1 Finding modules

You can list the modules that are compatible with your current module set by using command:

module avail

Because of the hierarchical structure of the Lmod system you can not load all installed modules using just
one module load command. The avail command does not show modules that can not be loaded due to
conflicts or unmet dependencies. Reason for these protective restrictions is to prevent you from loading
module combination that do not work.

You can get the list of all installed software packages using command:

module spider

You can also give the name or part of the name of the module as an argument, for example:

module spider int

14

will list all modules with string “int” in the name. More detailed description of a module can be printed
using the full module name with version number, for example:

module spider fftw/3.3.2

2.1.2 Solving conflicts

As mentioned above, the module system does not let the user to load conflicting modules. In these cases
you have to solve these conflicts before loading the module. In the easiest case the module system gives you
explicit guidance. For example, if you try to load a compiler module on top of another one, you will get an
error message:

-bash-4.1$ module load gcc

Lmod has detected the following error: You can only have one compiler module loaded at a time.
You already have intel loaded.
To correct the situation, please enter the following command:

module swap intel gcc/4.8.2

Some modules depend on other modules. Also in these cases the information from the module system is
obvious, for example:

-bash-4.1$ module load netcdf4

Lmod has detected the following error: Cannot load module "netcdf4/4.3.0" without these modules loaded:
hdf5-par/1.8.10

More complicated procedures are needed when the module is not compatible with currently loaded compiler
and/or MPI-library. In these cases the module avail command does not even list the module and module load
command can not find it. Easiest way to check what environment is required for the desired module is to use
module spider command with version information. For example:

-bash-4.1$ module spider hypre/2.9.0b
--
hypre: hypre/2.9.0b

--
This module can only be loaded through the following modules:

intel/12.1.5, intelmpi/4.0.3
intel/13.0.1, intelmpi/4.1.0
intel/13.1.0, intelmpi/4.1.0

...

So in this case you will have to load one the listed environments before you can proceed with module load
command.

15

2.2 Advanced topics

2.3.1 Module hierarchy

In general, libraries built with one compiler need to be linked with applications using the same compiler. For
example, you can not use the MPI Fortran90 module compiled with Intel compilers with gfortran, but you
have to use a version compiled with gfortran. Environment modules have several mechanisms that prevent
the user from setting up a non-working environment.

The module hierarchy helps us to keep the compiler and MPI library settings compatible with each other. In
practice, for each supported compiler there is a module for a supported MPI library. When user switches the
compiler module, the module system tries to find the correct versions of loaded modules:

-bash-4.1$ module list
Currently Loaded Modules:

1) intel/12.1.5 2) mkl/10.3.11 3) intelmpi/4.0.3

-bash-4.1$ module switch intel gcc
Due to MODULEPATH changes the following modules have been reloaded:
1) mkl/10.3.11 2) intelmpi/4.0.3

If a correct version is not found, the module system deactivates these modules. In practice, the module is
unloaded, but it is marked so that when the compiler/MPI configuration is changed, the system tries to find
a correct version automatically.

This hierarchy is implemented by changing the $MODULEPATH variable. Every compiler module adds
its own path to the module path so that software modules compatible with that specific compiler can be
listed. When the compiler module is unloaded, this path is removed from the module path. Same applies
also to the MPI modules.

2.2.2 Using your own module files

If you want to use modules to control the software packages that you install by yourself, you can add your own
modules files to your home directory. For example, if you add the module files to $HOME/modulefiles,
you can access them after you add the path to the modules search path using command:

module use $HOME/modulefiles

3. Batch jobs

CSC uses batch job systems to execute computing tasks in clusters and supercomputers. In this chapter we
provide introduction to the SLURM (Simple Linux Utility for Resource Management) batch job system
that is used in Taito supercluster.

Batch job systems are essential for e�ective usage of large computing servers. First of all, the batch job
system takes care that the server does not get overloaded: Users can submit large amounts of jobs to be
executed and the batch job system takes automatically care that optimal number of jobs are running, while
rest of the jobs are queueing until su�cient resources are available. Further, most of the batch job systems
have a "fair share" functionalities that take care that, on the long run, all the users get equal possibilities to

16

use resources. For example in a case where user A has submitted 500 jobs before user B submits his job, the
user B don’t have to wait that all the jobs of user A have been processed. Instead, the batch job system gives
higher priority to the job of user B compared to user A, as user A is already using much more computing
resources that user B.

When a batch job system is used, the commands to be executed are not started immediately like in normal
interactive usage. Instead the user creates a file that contains the Linux commands to be executed. In
addition to the commands, this so called batch job file normally contains information about the resources that
the job needs (for example: required computing time, memory and number of cores). The batch job file is
submitted to the batch job system with a job submission command. After that the batch job system checks
the resource requirements of the job, sends the job to a suitable queue and starts the job when su�cient
resources are available. If the job exceeds the requested values (e.g. requires more computing time than what
was requested) the batch job system kills the job. After job submission, user can follow the progress of the
job or cancel the job if needed.

3.1 Constructing a batch job file

3.1.1 Batch Job Script Wizard

The most common way to use the SLURM batch job system is to first create a batch job file that is submitted
to the scheduler with command sbatch. You can create batch job files with normal text editors or you can
use the Batch Job Script Wizard tool, in the Scientist’s User Interface(https://sui.csc.fi/group/sui/batch-
job-script-wizard), (see Figure 3.1). In the Batch Job Script Wizard, you first select the server you want
to use and then fill in the settings for the batch job. The Batch Job Script Wizard can’t directly submit the
job, but with the “Save Script” you can save the batch job file directly to your home directory at CSC. After
that you can use the My Files tool to further edit and launch the batch job (see paragraph 3.1.5).

17

Figure 3.1 Batch Job Script Wizard in the scientist’s user interface (https://sui.csc.fi/group/sui/batch-job-
script-wizard)

3.1.2 Structure of a batch job file

Below is an example of a SLURM batch job file made with a text editor:

#!/bin/bash -l
#SBATCH -J hello_SLURM
#SBATCH -o output.txt
#SBATCH -e errors.txt
#SBATCH -t 01:20:00
#SBATCH -p serial
#
echo "Hello SLURM"

The first line of the batch job file (#!/bin/bash -l) defines that the bash shell will be used. The following five
lines contain information for the batch job scheduler. The syntax of the lines is:

#SBATCH -sbatch_option argument

In the example above we use five sbatch options: -J that defines a name for the batch job (hello_SLURM in
this case), -o defines file name for the standard output and -e for the standard error. -t defines that the

18

maximum duration of the job is in this case 1 hour and 20 minutes. -p defines that the job is to be send to
serial partition. After the batch job definitions comes the commands that will be executed. In this case there
is just one command: echo “Hello SLURM” that prints text “Hello SLURM” to standard output.

The batch job file above can be submitted to the scheduler with command:

sbatch file_name.sh

The batch job file above includes only the most essential job definitions. However, it is often mandatory or
useful to use other sbatch options too. The options needed to run parallel jobs are discussed more in detail
in the following chapters. Table 3.1 contains some of the most commonly used sbatch options. The full list of
sbatch options can be listed with command:

sbatch -h

or

man sbatch

Table 3.1 Most commonly used sbatch options

Slurm option Description
–begin=time Defer job until HH:MM MM/DD/YY.
-c, –cpus-per-task=ncpus Number of cpus required per task.
-C, –constraint=value In Taito, the –constraint=hsw option can be used to select hugemem nodes with Haswell processors and ssd-based temporary directory.
-d, –dependency=type:jobid Defer job until condition on jobid is satisfied.
-e, –error=err File for batch script’s standard error.
–ntasks-per-node=n Number of tasks to per node.
-J, –job-name=jobname Name of the job.
–mail-type=type Notify on state change: BEGIN, END, FAIL or ALL.
–mail-user=user Who to send email notification for job state changes.
-n, –ntasks=ntasks Number of tasks to run.
-N, –nodes=N Number of nodes on which to run.
-o, –output=out File for batch script’s standard output.
-t, –time=minutes Time limit in format hh:mm:ss.
–mem=MB Maximum amount of real memory per node required by the job in megabytes. (Recommended for serial jobs and shared memory parallel jobs)
–mem-per-cpu=MB Maximum amount of real memory per allocated CPU required by the job in megabytes.(Recommended for MPI parallel jobs)
-p Specify queue (partition) to be used. In Taito the available queues are: serial, parallel, longrun, test and hugemem.

In the second batch job example below options –mail-type and –mail-user are used to make the batch system
to send e-mail to address kkayttaj@uni.fi when to job ends. Further the job is defined to reserve 4GB of
memory. In the output and error file definitions %j is used to use the job id-number in the file name, so that
if the same batch job file is used several times, the old output and error files will not get overwritten.

19

#!/bin/bash -l
#SBATCH -J hello_SLURM
#SBATCH -o output_%j.txt
#SBATCH -e errors_%j.txt
#SBATCH -t 01:20:00
#SBATCH -n 1
#SBATCH -p serial
#SBATCH --mail-type=END
#SBATCH --mail-user=kkayttaj@uni.fi
#SBATCH --mem=4096
#

echo "Hello SLURM"
./my_command

3.1.3 Queues and resource requests

Setting optimal values for the requested computing time, memory and number of cores to be used is not
always a simple task. It is often useful to first send short test jobs to get a rough estimate of the computing
time and memory requirements of the job. It is safer to reserve more computing time than needed, but
remember that jobs with large computing time request may, and often have to, wait longer time in the queue
than shorter jobs.

All the batch queues have maximum durations and maximum amount of nodes that a job can use. You can
check these limits with command sinfo. For example:

sinfo -o "%10P %.5a %.10l %.10s %.16F "
PARTITION AVAIL TIMELIMIT JOB_SIZE NODES(A/I/O/T)
serial* up 3-00:00:00 1 358/0/0/358
parallel up 3-00:00:00 1-28 358/0/0/358
longrun up 14-00:00:0 1 358/0/0/358
test up 30:00 1-2 2/0/0/2
hugemem up 7-00:00:00 1 6/0/0/6

The sinfo output above tells that the cluster has five partitions (parallel, serial, longrun, test and
hugemem). For example, the maximum execution time in parallel queue is three days (3-00:00:00) and
the jobs can use use up to 28 Haswell nodes (28 * 24= 672 cores). Similarly the maximum duration of jobs
submitted to test queue is 30 minutes (30:00).

The cluster partition you are using should match the reservations for computing time, core number and
memory. By default a job is submitted to the serial partition, where you can run serial jobs or parallel
jobs that use up to 24 cores (one Haswell node) and require at most three days of run time. The maximum
memory that can be reserved for a job in the serial partition is 256 GB. If your job requests exceeds these
limits, you must use option -p to choose a partition, which meets the resource requests.

For example a serial job that requires 6 days of computing time can be executed in the longrun partition

20

#!/bin/bash -l
#SBATCH -J longrun_SLURM
#SBATCH -o output.txt
#SBATCH -e errors.txt
#SBATCH -t 6-00:00:00
#SBATCH -p longrun
#

./my_long_job

A small parallel job, that requires 1.0 TB of memory can be executed in the hugemem partition

#!/bin/bash -l
#SBATCH -J longrun_SLURM
#SBATCH -o output.txt
#SBATCH -e errors.txt
#SBATCH -t 06:00:00
#SBATCH -n 1
#SBATCH --mem-per-cpu=1000000
#SBATCH -p hugemem
#

./my_bigmemory_job

Estimating the memory request is even more di�cult as it is dependent on several things like algorithm and
software and the analysis task. In most case 1-4 GB is enough but you may need to increase the memory size
in the case of some application.

Command sjstat can be used to check the available memory for nodes in di�erent partitions. The sjstat
command lists the scheduling pool data and the running jobs. The scheduling pool data can be used to check
the available memory in di�erent partitions. You can check just the scheduling pool data by adding option -c
to the command:

sjstat -c

Scheduling pool data:

Pool Memory Cpus Total Usable Free Other Traits

serial* 128600Mb 24 348 348 0 hsw,haswell,snb,sandybridge
serial* 258000Mb 24 10 10 0 hsw,haswell,snb,sandybridge
parallel 128600Mb 24 348 348 0 hsw,haswell,snb,sandybridge
parallel 258000Mb 24 10 10 0 hsw,haswell,snb,sandybridge
longrun 128600Mb 24 348 348 0 hsw,haswell,snb,sandybridge
longrun 258000Mb 24 10 10 0 hsw,haswell,snb,sandybridge
test 128600Mb 24 2 2 2 hsw,haswell,snb,sandybridge
hugemem 1551000Mb 32 2 2 0 bigmem,snb,sandybridge
hugemem 1551000Mb 40 4 4 0 bigmem,hsw,haswell,ssd

The sample listing above tells e.g. that resource pool test contains 2 nodes, each having 128 GB of memory
and 24 cores.

Table 3.2 Available batch job queues in supercluster taito.csc.fi.

21

Queue Maximum number of cores Maximum run time
serial (default) 24 (one node) 3 days
parallel 672 (28 nodes) 3 days
longrun 24 (one node) 14 days
hugemem 32/40 (one node*) 7/14 days**
test 48 (two nodes) 30 min

* Sandy Bridge / Haswell (one Sandy Bridge node consists of 32 and Haswell one of 40 cores)
** For exceptionally long hugemem jobs, the maximum run time can be extended up to 14 days using
SBATCH option –qos=hugememlong .

3.1.4 Choosing between processor architectures in hugemem queue

If a code is compiled with Haswell processor specific optimization parameters, it will not work in the Sandy
Bridge processors. In these cases it is necessary to submit the job so that it will use only Haswell based nodes.
This can be specified with by adding following constraint parameter to the batch job file:

#SBATCH --constraint=hsw

Similarly, if you for some reason want to use only Sandy bridge processors, you should use constraint (Sandy
bridge nodes has been removed):

#SBATCH --constraint=snb

Currently only the hugemem queue has nodes with Sandy Bridge processors. By adding defintion –
constraint=hsw to your batch job script you can ensure that in the newer Haswell based hugemem nodes
that have the fast SSD based local temporary storage.

3.1.5 Using Scientist’s User Interface to execute batch jobs

My Files tool in Scientist’s User interface web portal (https://sui.csc.fi/group/sui/my-files) can be used to
transfer and access data in CSC’s storage systems (see Chapter 5.1 of CSC computing environment user
guide for details). In addition to data management, My Files allows users to submit batch jobs for execution.
In My Files, select computing host (for example, Taito) and then browse in $WRKDIR in directory where
your job script is saved. Then select job script file and right-click with mouse. This will open a context menu
showing action "Submit Batch Job". Selecting this action will send your job script for computation.

22

Figure 3.2 Submitting job with My Files in Scientist’s User Interface (https://sui.csc.fi/group/sui/my-files)

3.2 Using SLURM commands to execute batch jobs

The basic SLURM commands for submitting batch jobs are sbatch that submits jobs to batch job system
and scancel that can be used to stop and remove a queueing or a running job. The basic syntax of the
sbatch command is:

sbatch -options batch_job_file

Normally the sbatch options are included in the batch job file, but you can use the options listed in Table 3.1,
in command line too. For example:

sbatch -J test2 -t 00:05:00 batch_job_file.sh

If the same option is used both in command line and in the batch job file, the value defined in the command
line overrides the value in the batch job file. When the job is successfully launched, the command prints out
a line, telling the ID number of the submitted job. For example:

Submitted batch job 6594

The job ID number can be used to follow the progress of the job or to remove it. For example, a job with ID
6594 can be removed from the batch job system with command:

scancel 6594

23

The number of jobs, that a single user can have in the batch job system of Taito at once, has been limited to
896, to prevent batch job system from overloading.

Progress of the submitted batch jobs can be followed with commands squeue, sjstat and sacct. These
commands can also be used to check the status and parameters of the batch job environment. squeue,
sjstat and sacct usage examples are given below.

By default squeue command lists all the jobs which are submitted to the SLURM scheduler. If you want to
see status of your own jobs only, you can use command:

squeue -l -u username

or

squeue -l -u $USER

You can also check the status of a specific job by defining the jobid with -j switch. Using option -p partition

will display only jobs on that SLURM partition.

Command scontrol allows to view SLURM configuration and state. To check when the job waiting in the
queue will be executed, the command scontrol show job jobid can be used. A row “StartTime=. . . ” gives
an estimate on the job start-up time. It may happen that the job execution time can not be approximated,
in which case “StartTime= Unknown”. Note, that the “StartTime” may change, e.g., be shortened, as the
time goes.

The sacct command can be used to study the log file of the batch job system. Thus it can show information
about both active jobs and jobs that have already finished. By default the sacct command shows information
about users’ own jobs. The sacct command has a wide selection of options and parameters that can be used
to select the data to be displayed. By default sacct displays information from the time period that starts
from the midnight of current day. You can change the starting date with option -S YYYY-MM-DD. For
example, to list the information since first of February 2015 you can use command:

sacct -S 2015-02-01

Information about specific jobs can be checked with option -J job-ID. For example detailed information
about job number 6594 could be shown with command:

sacct -S 2013-02-01 -j 6594 -l

Quite often the full listing of the job information is not desirable. To choose only specific information, you
can use option -o combined with the list of fields to display. For example:

[kkayttaj@taito-login4~]$ sacct -j 6594 -o MaxRSS,AveRSS,ReqMem,Elapsed,AllocCPUS
MaxRSS AveRSS ReqMem Elapsed AllocCPUS

---------- ---------- ---------- ---------- ---------
2347Mc 02:01:49 4

3480116K 3480116K 2347Mc 02:01:49 1

In the example above, the listing shows that job 6594 used 3.5 GB (3480116 KB) of memory and lasted 2
hours, 1 minute and 49 seconds. This information could then be used to optimize batch job parameters for
other similar jobs.

When a batch job has finished it is good to run se� command to check the e�ciency of your job. The syntax
of the se� command is:

seff jobid

A sample session below shows a case where a job (job_id: 54321) took 49 min and 19 s and used the reserved
CPU-resources rather e�ciently (98.68% e�ciency). In the cases of memory, nearly 40 GB was reserved
but only bit over 4 GB was used in maximum. Thus for a second similar job, the user should consider
decreasing the memory reservation.

24

[kkayttaj@taito-login4~] seff 54321
Job ID: 54321
Cluster: csc
User/Group: kayttaj/somegroup
State: COMPLETED (exit code 0)
Cores: 1
CPU Utilized: 00:48:40
CPU Efficiency: 98.68% of 00:49:19 core-walltime
Memory Utilized: 4.06 GB
Memory Efficiency: 10.39% of 39.06 GB

Table 3.1 Most frequently used SLURM commands.

Command Description
sacct Displays accounting data for all jobs.
salloc Allocate resources for interactive use.
sbatch Submit a job script to a queue.
scancel Signal jobs or job steps that are under the control of SLURM (cancel jobs or job steps).
scontrol View SLURM configuration and state.
se� View the CPU and memory e�ciency (real usage compared to the reserved resources)
sinfo View information about SLURM nodes and partitions.
sjstat Display statistics of jobs under control of SLURM (combines data from sinfo, squeue and scontrol).
smap Graphically view information about SLURM jobs, partitions, and set configurations parameters.
squeue View information about jobs located in the SLURM scheduling queue.
srun Run a parallel job.

3.3 Parallel batch jobs

Two approaches are commonly used in creating software that are able to utilize several computing cores.
Message Passing interface (MPI) based methods and threads based programs (POSIX-threads, OpenMP).
Considering CSC resources, Sisu supercomputer is intended for large MPI based parallel jobs but smaller MPI
jobs can be run in the Taito supercluster too. In case of threads-based parallel programs, the jobs should be
executed mainly in the Taito supercluster.

3.3.1 Threads-based parallel jobs

In case of threads-based parallel computing, the number of parallel processes (threads) is limited by the
structure of the hardware: all the processes must be running in the same node. Thus in the Haswell nodes
Taito cluster, threads-based programs can’t use more than 24 computing cores.

Sbatch option –cpus-per-task=number_of_cores is used the define the number of computing cores that the
batch job task will use. Option –nodes=1 ensures that all the reserved cores will be located in the same
node and -n 1 will assign all the reserved computing cores for the one same task.

In the case of threads-based jobs, the –mem option is recommended for memory reservation. This option
defines the amount of memory needed per node. Note that if you use –mem-per-cpu option instead, the
total memory request of the job will be memory request multiplied by the number-of-cpus. Thus if you modify
the number of cores to be used, you should check the memory reservation too.

25

Below is a sample batch job that uses bowtie2 software that can use threads-based parallelization.

#!/bin/bash -l
#SBATCH -J bowtie2
#SBATCH -o output_%j.txt
#SBATCH -e errors_%j.txt
#SBATCH -t 02:00:00
#SBATCH -n 1
#SBATCH --nodes=1
#SBATCH --cpus-per-task=6
#SBATCH -p serial
#SBATCH --mem=6000
#

module load biokit
bowtie2-build chr_18.fa chr_18
bowtie2 -p $SLURM_CPUS_PER_TASK -x chr_18 -1 y_1.fq -2 y_2.fq > output.sam

In the example above, one task (-n 1) that uses 6 cores (–cpus-per-task=6) with total of 6 GB of memory
(–mem=6000) is reserved for two hours (-t 02:00:00). All the cores are assigned from one computing node
(–nodes=1). When the job starts, the CSC bioinformatics environment, that includes Bowtie2, is first set up
with command:

module load biokit

After that two bowtie2 commands are executed. The indexing command, bowtie2-build, does not utilize
parallel computing. In case of the bowtie2 command, the number of cores to be used is defined with option -p.
In this case we are using six cores so the definition could be: -p 6. However in this case we use environment
variable $SLURM_CPUS_PER_TASK instead. This variable contains the number of cores defined by
the --cpus-per-task option. Thus by using $SLURM_CPUS_PER_TASK we don’t have to modify the
bowite2-align command if we change the number of cores to be used with the SBATCH options.

3.3.2 MPI-based parallel jobs

To compile Fortran + MPI code the following command can be used:

mpif90 my_mpi_prog.f95 -o my_mpi_program

The output executable program my_mpi_program is created.

Exemplary script for running MPI-based parallel job:

26

#!/bin/bash -l
###
parallel job script example
###
name of your job
#SBATCH -J my_jobname
system error message output file
#SBATCH -e my_output_err_%j
system message output file
#SBATCH -o my_output_%j
a per-process (soft) memory limit
limit is specified in MB
example: 1 GB is 1000
#SBATCH --mem-per-cpu=1000
how long a job takes, wallclock time hh:mm:ss
#SBATCH -t 11:01:00
##the number of processes (number of cores)
#SBATCH -n 24
##parallel queue
#SBATCH -p parallel
run my MPI executable
srun ./my_mpi_program

3.3.3 Interactive MPI-parallel jobs

The output executable program my_mpi_program can be run interactively with commands:

salloc -n 48 --ntasks-per-node=24 --mem-per-cpu=1000 -t 00:30:00 -p parallel
srun ./my_mpi_program
exit

Options:
-n number of processes (number of cores)
–ntasks-per-node On Taito there are 24 cores per node.That way your job will be distributed so that the
number nodes is minimized
-t running time, wallclock, format hh:mm:ss (hours:minutes:seconds)
–mem-per-cpu per process memory limit (MB)

Other way (one-liner):

salloc -n 48 --ntasks-per-node=24 --mem-per-cpu=1000 -t 00:30:00 -p parallel srun ./my_MPI_executable

One can also use –ntasks-per-node option to control how the job is distributed to the nodes of the cluster.

3.3.4 Choosing between Sandy Bridge or Haswell nodes

Haswell processors can run code optimized for Sandy Bridge processors, but Sandy Bridge processors cannot
run Haswell optimized executables. Currently there are two hugemem nodes that still use the the older Sandy
Bridge processors. If you have to run binaries that require the older architecture on hugemem partition, you
have to add --constraint=snb option to the batch job script (Sandy Bridge nodes has been removed).

27

3.4 Interactive batch jobs

Interactive batch jobs can be used in Taito for running graphical interfaces or other tasks that require input
from the user during the execution of the computing task. Note, that you may need to queue for SLURM to
allocate these resources, except if you choose Taito-shell, see below.

The most easy way to run interactive batch jobs is to use Taito-shell, described in chapter 8 of this guide.
When a taito-shell session is opened, the session is actually an interactive batch job, that has following
properties:

• Unlimited running time
• Computing capacity up to 4 cores per session
• Shared memory of up to 128 GB per session

You can open Taito-shell session, either by directly connecting taito-shell.csc.fi:

ssh -X taito-shell.csc.fi -l csc_user_id

or if you have already logged in to Taito, you can open a Taito-shell session with command:

sinteractive

In cases, the you can’t use taito-shell/sinteractive (e.g. in the case of interactive mpi jobs), you can use the
srun command to launch interactive batch job sessions. For example command:

srun -n1 -t02:00:00 --x11=first --pty $SHELL

would launch interactive batch jobs session, running the default command shell ($SHELL). In the command
above, one core (-n1) is reserved for two hours (-t02:00:00). The definition –x11=first sets up the x11
connection so that graphical user interfaces can be used.

Bellow is a sample session where the VMD molecular visualization program is started on an interactive batch
job session. Note that after the srun command, the commands are not executed in the login node any more.
In stead the VMD is now started in one of the computing nodes (node c120 in this case) and thus VMD is
not causing extra load to the login node:

[kkayttaj@taito-login4 kkayttaj]$ srun -n1 -t02:00:00 --x11=first --pty $SHELL
[kkayttaj@c120 kkayttaj]$ module load vmd
VMD version 1.9.1 is now in use
[kkayttaj@c120 kkayttaj]$ vmd

You can also use interactive batch job sessions to test your software. In these cases you can use srun as above
or alternatively, first the resource allocation with command: salloc and the submit jobs with srun command.

In the example bellow a request for 48 cores (-n 48) with 1 GB/core (–mem-per-cpu=1000) for 30 minutes
(-t00:30:00) is submitted with the salloc command. Two full Taito Haswell nodes nodes will be reserved
for the interactive job as 24 cores will be used from one node (–ntasks-per-node=24). Once the resource
allocation is done the Gromacs jobs can be launched using the srun command:

salloc -n 48 --ntasks-per-node=24 --mem-per-cpu=1000 -t00:30:00 -p parallel
srun mdrun_mpi -s topol1 -dlb yes
srun mdrun_mpi -s topol2 -dlb yes
exit

28

In the example above the exit command closes the resource allocation done by the salloc command.

3.5 Array jobs in Taito

3.5.1 Defining an array job

In many cases the computational analysis job contains a number of similar independent subtasks. The user
may have several datasets that will be analyzed in the same way or same simulation code is executed with a
number of di�erent parameters. These kind of tasks are often called as "embarrassingly parallel" jobs as the
task can be in principle distributed to as many processors as there are subtasks to be run. In Taito this kind
of tasks can be e�ectively run by using the array job function of the SLURM batch job system.

In SLURM, an array job is defined by using the option –array or -a . For example definition:

#SBATCH --array=1-100

will launch not just one batch job, but 100 batch jobs where the subjob specific environment variable
$SLURM_ARRAY_TASK_ID gets values form 1 to 100. This variable can then be utilized in the
actual job launching commands so that each subtask gets processed. All the subjobs are launched to the
batch jobs system at once and they will be executed using as many processors as there are available.

Note that in Taito the range of the $SLURM_ARRAY_TASK_ID variable is limited between
0 and 1000.

In addition to a defining a job range, you can also provide a list of job index values. For example definition:

#SBATCH --array=4,7,22

would launch three jobs with $SLURM_ARRAY_TASK_ID values 4, 7 and 22.

You can also add a step size to the job range definition. For example following array job definition:

#SBATCH --array=1-100:20

would run five jobs with $SLURM_ARRAY_TASK_ID values: 1, 21, 41, 61 and 81.

In some cases it may be reasonable to limit to number of simultaneously running processes. This is done
with notation: %max_number_of_jobs. For example, in a case were you have 100 jobs but a license for only
five simultaneous processes, you could ensure that you will not run out of license with following definition:

#SBATCH --array=1-100%5

3.5.2 Simple array job example

As a first array job example lets assume that we have 50 datasets (data_1.inp, data_2.inp . . . data_50.inp)
that we would like to analyze using program my_prog, that uses syntax:

my_prog inputfile outputfile
Each of the subtasks requires less than 2 hours of computing time and less than 4 GB of memory. We can
perform all 50 analysis tasks with following batch job script:

29

#!/bin/bash -l
#SBATCH -J array_job
#SBATCH -o array_job_out_%A_%a.txt
#SBATCH -e array_job_err_%A_%a.txt
#SBATCH -t 02:00:00
#SBATCH --mem-per-cpu=4000
#SBATCH --array=1-50
#SBATCH -n 1
#SBATCH -p serial

move to the directory where the data files locate
cd data_dir
run the analysis command
my_prog data_"$SLURM_ARRAY_TASK_ID".inp data_"$SLURM_ARRAY_TASK_ID".out

In the batch job script the line #SBATCH –array=1-50 defines that 50 subjobs will be submitted. Other
#SBATCH lines refer to the individual subjobs. In this case one subjob uses one processor (-n 1) max. 4
GB of memory (–mem-per-cpu=4000) and can last max. 2 hours (-t 02:00:00). However, the total wall
clock time needed to process all the 50 tasks is not limited by any sense.

In the job execution commands, the script utilizes $SLURM_ARRAY_TASK_ID variable in the definition
of input and output files so that the first subjob will run command:

my_prog data_1.inp data_1.out

second will run command:

my_prog data_2.inp data_2.out

and so on.

The job can be now launched with command:

sbatch job_script.sh

Typically not all jobs get into the execution at once. However after a while a large number of jobs may be
running in the same time. When the batch job is finished the data_dir directory contains 50 output files.

If you give command squeue -l after submitting your array job, you can see that you have one job pending
and possibly several jobs running in the batch job system. All these jobs have a jobid that contain two parts:
jobid number of the array job and the sub-job number. Directing the output of each subjob into a separate
file is recommended as the file system may fail if several dozens of processes try to write into same file at the
same time. If the output files need to be merged into one file it can often be easily done after the array job
has finished. For example in the case above we could collect the results into one file with command:

cat data_*.out > all_data.out

In the case of standard output and error files, defined in the SBATCH lines, you can use definitions %A and
%a to give unique names to the output files of each sub-job. In the file names %A will be replaced by the ID
of the array job and %a will be replaced by the $SLURM_ARRAY_TASK_ID.

30

3.5.3 Using a file name list in an array job

In the example above, we were able to use $SLURM_ARRAY_TASK_ID to refer to the order numbers
in the input files. If this type of approach is not possible a list of files or commands, created before the
submission of the batch jobs, can be used. Let’s assume that we have a similar task as defined above, but the
file names don’t contain numbers but are in format data_aa.inp, data_ab.inp, data_ac.inp. . . and so on.
Now we need first to make a list of files to be analyzed, In this case we could collect the file names into file
“namelist” with command:

ls data_*.inp > namelist

In example below we will use command :

sed –n "row_number"p inputfile

to read a certain line form the name list file. In this case the actual command script could be following:

#!/bin/bash -l
#SBATCH -J array_job
#SBATCH -o array_job_out_%j.txt
#SBATCH -e array_job_err_%j.txt
#SBATCH -t 02:00:00
#SBATCH --mem-per-cpu=4000
#SBATCH --array=1-50
#SBATCH -n 1
#SBATCH -p serial

move to the directory where the data files locate
cd data_dir
set input file to be processed
name=$(sed -n "$SLURM_ARRAY_TASK_ID"p namelist)
run the analysis command
my_prog $name $name.out

This example is otherwise similar to the first one, but it will read the name of the file to be analyzed form a
file called namelist. This value is stored into variable $name, which will be used in the job execution command.
As the row number to be read is defined by the $SLURM_ARRAY_TASK_ID, each data file listed in the
file namelist will get processed in a di�erent subjob. Note that as we now use the $name also in the output
definition the output file name will be in format data_aa.inp.out, data_ab.inp.out, data_ac.inp.out. . . and
so on.

3.5.4 Using array jobs in workflows with sbatch_commandlist

In Taito, you can use command sbatch_commandlist to execute a list of commands as an array job. This
command takes as an input a text file. Each row in this file is executed as an independet sub-task of a array
batch job, automatically generated by the sbatch_commandlist.

The sytax of this command is:

sbatch_commandlist -commands commandlist

Options -t and -mem can be used to modify the time and memory reservation of the subjobs (default 12 h,
8GB).

31

After submitting an array job, sabatch_commandlist monitors the progress of the job and finishes only when
the array job has finished. Thus this command can be used in workflows (including batch job scripts), where
only certain steps of the workflow can utilize array jobs based parallel computing.

As an example, lets assume we have a gzip compressed tar-archive file my_data.tgz containing a directory
with a large number of files. To create a new compressed archive, that includes also a md5 checksum file for
each file we would need to: (1) un-compress and un-pack my_data.tgz, (2) execute md5sum for each file
and finally (3) pack and compress the my_data directory again. The second step of the workflow could be
executed using a for-loop, but we could also use the loop just to generate a list of md5sum commands, that
can be processed with sbatch_commandist.

#!/bin/bash -l
#SBATCH -J workfow
#SBATCH -o workflow_out_%j.txt
#SBATCH -e workflow_err_%j.txt
#SBATCH -t 12:00:00
#SBATCH --mem=4000
#SBATCH -n 1
#SBATCH -p serial

#open the tgz file
tar zxf my_data.tgz
cd my_data

#generate a list of md5sum commands
for my_file in *
do

echo "md5sum $my_file > $my_file.md5" >> md5commands.txt
done

#execute the md5commands as an array job
sbatch_commandlist -commands md5commands.txt

#remove the command file and compress the directory
rm -f md5commands.txt
cd ..
tar zcf my_data_with_md5.tgz my_data
rm -rf my_data

Note that the batch job script above is not an array job, but it launches a another batch job that is an array
job.

Previous chapter One level up Next chapter

3.6 Profiling applications using Allinea Performance Reports

Allinea Performance Reports is a performance analytics tool that produces a one-page performance report
of your application detailing the amount of time spent in computation, I/O and communication. This
information is essential when trying to run the programs using optimal configuration. The detailed user guide
can be found from Allinea web pages.

32

[3.6.1 Using Performance Reports]3.6.1 Using Performance Reports

Set up the environment for analysis by loading the Performance Reports module as follows:

module load allinea/reports-6.0

The module adds a wrapper to the srun command so that profiling a MPI program can be done by loading
the module in the batch job script before the srun command, for example:

#!/bin/bash
#SBATCH -ptest
#SBATCH -Chsw
#SBATCH -t5
#SBATCH -n24

module load allinea/reports-6.0

srun ./my_application

Results of the profiling is written to a file that is named as aperf_NNNNN.txt where NNNNN is the slurm
job id of your job.

Serial programs can be profiled by adding the command perf-reports –nompi to your command line before
the name of your application. Here is an example of serial job script:

#!/bin/bash
#SBATCH -ptest
#SBATCH -Chsw
#SBATCH -t5
#SBATCH -n1

module load allinea/reports-6.0

srun perf-report --nompi ./my_application -i input_file

In this case the result file will be named as my_application_1p_2016-04-08_14-10.txt where the end of the
name is a time stamp.

[3.6.2 Examining the results]3.6.2 Examining the results

The result files are quite self explanatory and in the beginning of the report there is a short summary
with general suggestions for improving the performance. Allinea web page has some example reports with
additional analysis.

Previous chapter One level up Next chapter

4. Compiling environment

33

4.1 Available Compilers

C, C++ and Fortran are the most frequently used programming languages in scientific computing. In Taito
supercluster these programming languages can be used through two compiler suites. The default compiler
package is the Intel Parallel Studio XE 16.0. Alternatively you can use GNU Compiler collection 4.9.3. To
use another compiler package, or another version of a particular compiler package, one should switch the
active package using the module system (more information about module system in chapter 2).

For example to swap the default Intel compiler to GNU compiler, give command:

module swap intel gcc

Table 4.1 Compiler suites available in Taito

Compiler suite Version Module Man pages User Guides
GNU Compiler Collection 4.9.3 gcc man gcc C/C++

man gfortran Fortra
GCC

Intel Parallel Studio 16.0 intel man icc C/C++
man ifort Fortran

Intel

To read a man page of a specific compiler, one should execute the man command only after having switched
to the relevant programming environment.

For Intel Parallel Studio you can find extensive documentation from the Intel Software pages. In the Intel
web site you can find the C/C++ documentation under product nameIntel C/C++ User and Reference
Guideand the Fortran77/95 documentation under product name Intel Fortran User and Reference Guide.

CSC has created generic commands aliases such as f95 or mpif90 which refer to the compiler commands of
the loaded compiler package. For example, in the case of Intel compilers command f95 refers to Intel F95
compiler, but when the GNU compiler suite is in use the same command refers to gfortran command. The
aliases are listed in table 4.2.

Table 4.2 Compiler aliases at CSC

Language compiler command MPI parallel compiler command
Fortran 77 f77 mpif77
Fortran 95 f95 mpif90
C cc mpicc
C++ CC mpiCC

There are two important factors that should be taken into account when choosing between the compilers:
correctness and performance of the compiled program.

• Correctness: Some programs may only produce correct results when compiled with a particular
compiler. It is also possible that the program produces wrong results when compiled using aggressive
compiler optimizations. It is thus of key importance to always check that the compiled program actually
produces correct results.

• Performance: One should choose the compiler giving the best performance, while still producing
correct results. It is impossible to know ahead of time which compiler is the best for a particular
program. One simply has to find the best compiler and its optimal compiler options using a ’generate
and check’ method.

34

Intel and GNU compilers use di�erent compiler options. Detailed list of options for Intel and GNU compiler
can be found from man pages when corresponding programming environment is loaded, or in the compiler
manuals on the Web (see links above this chapter).

Table 4.3 below lists some good optimization flags for the installed compilers. It is best to start from the safe
level and then move up to intermediate or even aggressive, while making sure that the results are correct and
that the program has better performance.

Taito has Intel Sandy Brigde and Haswell microarchitecture nodes. To enable full instruction set that these
microarchitectures supports, use the option -xHost with Intel Compiler and the option -march=sandybridge
or -march=haswell with GNU compiler. Because -xHost will generate instructions for the highest instruction
set available on the compilation host processor this option wiil generate Sandy Brigde instructions on login
nodes. Haswell instructions will be generated when code is compiled on Haswell nodes (and -xHost option
has been selected). Interactive sessions on compute nodes are explained on Section 3.4 Interactive bacth
jobs. Remember that if the compiled code has Haswell instructions such as AVX2 and FMA it will not run
on Sandy Bridge nodes. Gnu compilers (gcc, g++, gfortran) versions 4.9 and later and Intel compilers
(icc, icpc , ifort) versios 14 and later support Haswell specific compiling.

Table 4.3 Simple optimization flags for Intel and GNU compilers.

Optimisation level Intel GNU
Safe -O2 -fp-model precise -fp-model

source

(Use all three options. One can
also use options -fp-model
precise -fp-model source with
intermediate and aggressive flags
to improve the consistency and
reproducibility of floating-point
results)

-O2

Intermediate -O2 -xHost (see Remark1) -O3 -march=native (see
Remark1)

Aggressive -O3 -xHost -opt-prefetch
-unroll-aggressive -no-prec-div
-fp-model fast=2 (see Remark1)

-O3 -march=native -�ast-math
-funroll-loops (see Remark1)

Haswell instructions (binary
works only on Haswell nodes)
Load also: “module load binutils”

-xCORE-AVX2 -fma -march=haswell

Haswell and Sandy Bridge
instructions (binary works on
all nodes)

-xAVX -axCORE-AVX2 Gnu do not support this

Sandy Bridge instructions
but tune for Haswell (binary
works on all nodes)

Intel do not support this (use
above flags)

-march=sandybridge
-mtune=haswell

Remark1: If Intel -xHost or GNU flag -march=native is selected on login/Sandybridge nodes a compiler will
generate Sandy Bridge instructions and binary works on all nodes. If Intel -xHost or GNU flag -march=native
is selected on Haswell nodes a compiler will generate Haswell instructions and binary works only on Haswell

35

nodes.

Do you need more information about Haswell and Sandybridge compiling? See chapter 4.6 Processor
architecture specific compiling.

Link time optimization methods are available on Intel and GNU compilers. In GNU case read more
fromlink(see option -flto) and in Intel case this link (see IPO optimization).

Table 4.4 Basic options that are common for both Intel and GNU compilers:

Option Description
-c Compiles only, produces unlinked object filename.o
-ofilename Gives the name filename for the executable. Default: a.out
-g Produces symbolic debug information
-Idirname Searches directory dirname for for library files specified by -l
-Ldirname Searches directory dirname for for library files specified by -L
-llibname Searches the specified library file with the name liblibname.a
-O[level] Specifies whether to optimize or not and at which level level, for example -O0 means turning o� optimizations

4.2 Mathematical libraries

4.2.1 MKL (Intel Math Kernel Library)

Intel MKL is a mathematical library collection that is optimized for Intel processors. On Taito, MKL can be
used with both Intel and GNU compilers for Fortran and C/C++ programming. However cluster libraries
(BLACS, ScaLAPACK and Cluster FFT functions) will work only with IntelMPI on Taito.

MKL includes the following groups of routines:

• BLAS (Basic Linear Algebra Subprograms)
• Sparse BLAS
• LAPACK (Linear Algebra PACKage)
• PBLAS (Parallel Basic Linear Algebra Subprograms)
• BLACS (Basic Linear Algebra Communication Subprograms)
• ScaLAPACK (Scalable LAPACK)
• Sparse Solver routines (direct sparse solver PARDISO, direct sparse solver DSS, iterative sparse solvers

RCI, preconditioners for iterative solution process)
• Vector Mathematical Functions (VML, arithmetic, power, trigonometric, exponential, hyperbolic,

special, and rounding)
• Vector Statistical Functions (VSL, random numbers, convolution and correlation, statistical estimates)
• General Fast Fourier Transform (FFT) Functions
• Cluster FFT functions
• Partial Di�erential Equations (PDE) support tools (Trigonometric Transform routines, Poisson routines)
• Nonlinear least squares problem solver routines
• Data Fitting functions (spline-based)
• Support Functions (timing, thread control, memory management, error handling, numerical repro-

ducibility)

36

MKL library has two integer interfaces 32-bit (they call it: LP64) and 64-bit integer (ILP64) interfaces. So if
you work with data arrays that have more than 231-1 elements ILP64 interface is for you.

MKL supports sequential and threaded programming modes. Intel MKL is based on the OpenMP threading.
See: Improving performance with threading for more information.

Users Guide and Reference manual

4.2.2 Usage of MKL in Taito

Make sure that mkl module has been loaded. If not give command:

module load mkl

Basic information can be found from link:

• What You Need to Know Before You Begin Using the Intel Math Kernel Library

Load one of the supported compiler environments. Because MKL includes many libraries and programming
interfaces a link line can be a long list. To find a correct line for a case, specify your choices using Intel Math
Kernel Library (MKL) Link Line Advisor tool:

• http://software.intel.com/sites/products/mkl/

Table 4.5 lists the setting you should use with the Link Line Advisor.

Table 4.5 Link Line Advisor tips for Taito:

Select Intel® product

Intel MKL 11.0 (or another installed version)

Select OS

Linux

Select compiler

Intel or Gnu Fortran or C/C++

Select architecture

Intel 64

Select dynamic or static linking

both options (static/dynamic) are OK

Select interface layer

LP64 or ILP64 (what is the integer range in your code)

Select sequential or multi-threaded layer

sequential and threaded programming modes are supported

Select OpenMP library

This is needed only for threaded applications and/or enable threading in MKL

Select cluster library

Select these If a code is using ScaLAPACK, BLACS or Cluster FFT

Select MPI library

IntelMPI

37

Select the Fortran 95 interfaces

Select this only if your application has a Intel MKL Fortran module interface. (if your code has a standard
BLAS/LAPACK interface you do not select these)

Link with Intel® MKL libraries explicitly

Copy the results (link line and compiler option results) into a Makefile. In command line compiling and
linking case remove all brackets that the advisor gives (for example if there is a variable (MKLROOT) in
brackets then remove the brackets.

When you run an OpenMP (threaded) application there are environment variables for threading control.
Before running an application set the OMP_NUM_THREADS variable. For example 16 threads:

export OMP_NUM_THREADS=16

MKL has also some additional MKL thread control environment variables.

For quick linking Intel compiler supports variants of the -mkl compiler option. The compiler links your
application using the LP64 interface and it does not use Intel MKL Fortran module 95 interfaces.

• -mkl or -mkl=parallel to link with threaded MKL

• -mkl=sequential to link with sequential MKL

• -mkl=cluster to link with cluster libraries that use IntelMPI

for example:

f95 -o my_code my_code.f90 -mkl=sequential

Add option -static-intel if you want to use static linking, dynamic linking is the default.

MKL include files

This link has a include file table (for Fortran and C/C++).

4.3 Using MPI

Message passing interface (MPI) is a flexible parallel programming paradigm, and it is the dominant method
of parallelization codes in scientific computing. MPI is suitable for both distributed memory computers and
shared memory architectures. In MPI, each task has an address space in memory that other tasks cannot
directly access. When exchange of data is needed between tasks, the tasks send ’messages’ to each other.

Intel MPI, MVAPICH2 and OpenMPI are available on Taito, however CSC does not provide support for
OpenMPI. The Intel MPI is the default MPI library. The module commands below enable unloading Intel
MPI and loading MVAPICH2.

module unload intelmpi
module load mvapich2

38

4.3.1 Compiling and linking MPI programs on Taito

There are compiler wrappers mpif90, mpicc and mpiCC for compiling Fortran, C and C++ MPI programs,
respectively. These wrappers take care of compiler and linker directives for compiling MPI programs. Users
do not need to specify include file locations, MPI libraries or their locations. For example, a MPI program
(one source code file) written with the Fortran language (’my_mpi_prog.f95’) is compiled and linked as:

mpif90 my_mpi_prog.f95 -o my_mpi_prog

To compile each of the source code files separately use -c flag. The example below will generate the object
code files my_mpi_source1.o and my_mpi_source2.o.

mpif90 -c my_mpi_source1.f95
mpif90 -c my_mpi_source2.f95

These can be linked to an executable program (my_mpi_prog)

mpif90 my_mpi_source1.o my_mpi_source2.o -o my_mpi_prog

The -show option displays the actual compilation/linking command generated by the wrapper. For example,
try:

mpif90 -show

4.3.2 Include files

In order to use MPI in your program, you need to include the MPI library in your source code by having one
of the following lines.

For programs written in Fortran 77 use:

include �mpif.h�

and for Fortran 90 or newer use:

use mpi

For programs written in C/C++ use:

#include "mpi.h"

4.4 Shared memory and hybrid parallelization

The Haswell compute nodes on Taito contain two twelve core processors (24 cores per node). Hence, it
is possible to run shared memory parallel (OpenMP) programs e�ciently within a node with twenty four
threads at maximum.

4.4.1 How to compile

Both Intel and GNU compilers support OpenMP. Use the following compiler flags enable OpenMP support.

Table 4.6 OpenMP compiler flags

39

Compiler Flag
Intel -openmp
GNU -fopenmp

Here are examples for OpenMP and mixed (i.e. hybrid) OpenMP/MPI compiling (upper line: Intel compiler,
second line: GNU-compiler

f95 -openmp -o my_openmp_exe my_openmp.f95
mpif90 -fopenmp -o my_hybrid_exe my_hybrid.f95

See OpenMP web site for more information including standards and tutorials.

Include files

For Fortran 77 use following line:

include �omp_lib.h�

For Fortran 90 (and later) use:

use omp_lib

For C/C++ use:

#include <omp.h>

4.4.2 Running OpenMP programs

The number of OpenMP threads is specified with an environment variable OMP_NUM_THREADS.
Running a shared memory program typically requires requesting a whole node. Thus, a twenty four thread
OpenMP job can be run interactive on Haswell processors as shown in following examples. If you find out
that OpenMP sections of your code do not give run-to-run numerical stability try (with Intel compiled code)
to set the variable KMP_DETERMINISTIC_REDUCTION=yes.

Sample session for Intel compiled OpenMP program:

export KMP_AFFINITY=compact
export KMP_DETERMINISTIC_REDUCTION=yes #(if necessary and intel compiler version is 13 or later)
export OMP_NUM_THREADS=24
salloc -N1 --cpus-per-task=24 --mem-per-cpu=1000 -t 01:00:00
srun ./my_openmp_exe
exit

Sample session for GNU compiled OpenMP program:

export OMP_PROC_BIND=TRUE
export OMP_NUM_THREADS=24
salloc -n 1 -N 1 --cpus-per-task=24 --mem-per-cpu=1000 -t 01:00:00
srun ./my_openmp_exe
exit

The corresponding batch queue script would be (below just for Intel compiled OpenMP program):

40

#!/bin/bash -l
#SBATCH -J my_openmp
#SBATCH -e my_output_err_%j
#SBATCH -o my_output_%j
#SBATCH --mem-per-cpu=1000
#SBATCH -t 01:00:00
#SBATCH -N 1
#SBATCH -n 1
#SBATCH --cpus-per-task=24
export KMP_AFFINITY=compact
export KMP_DETERMINISTIC_REDUCTION=yes #(if necessary and intel compiler version is 13 or later)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASKS
srun ./my_openmp_exe

In the above example replace “export KMP_AFFINITY=compact” with “export OMP_PROC_BIND=TRUE”
if a code is compiled by GNU compiler. The KMP_DETERMINISTIC_REDUCTION do not help with
GNU compiled code.

4.4.3 Hybrid parallelization

In many cases it is beneficial to combine MPI and OpenMP parallelization. More precisely, the inter-node
communication is handled with MPI and for communication within the nodes OpenMP is used. For example,
on Haswell, consider an eight-node job in which there is one MPI task per node and each MPI task has
twenty four OpenMP threads, resulting in a total core (and thread) count of 192. Running a hybrid job can
be done interactively as above with the exception that more nodes are specified and for each node one MPI
task is requested. The parallel partition must be requested to run the program because there are more than
one node. That is, for a 8 x 24 job the following flags are used

export KMP_AFFINITY=compact
export KMP_DETERMINISTIC_REDUCTION=yes #(if necessary and intel compiler version is 13 or later)
export OMP_NUM_THREADS=24
salloc -p parallel -N 8 -n 8 --cpus-per-task=24 --mem-per-cpu=1000 -t 02:00:00
srun ./my_hybrid_exe
exit

The corresponding batch queue script would be (for Intel compiled code):

#!/bin/bash -l
#SBATCH -J my_hybrid
#SBATCH -e my_output_err_%j
#SBATCH -o my_output_%j
#SBATCH --mem-per-cpu=1000
#SBATCH -t 02:00:00
#SBATCH -N 8
#SBATCH -n 8
#SBATCH --cpus-per-task=24
#SBATCH -p parallel

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASKS

export KMP_AFFINITY=compact
export KMP_DETERMINISTIC_REDUCTION=yes #(if necessary and intel compiler version is 13 or later)
srun ./my_hybrid_exe

41

In the above example replace “export KMP_AFFINITY=compact” with “export OMP_PROC_BIND=TRUE”
if a code is compiled by GNU compiler. The KMP_DETERMINISTIC_REDUCTION do not help with
GNU compiled code.

4.4.4 Binding threads to cores

The compilers on Taito support thread/core a�nity which binds threads to cores for better performance.
This is enabled with compiler-specific environment variables as follows (Sandy Bridge):

Intel:

export KMP_AFFINITY=compact

GNU:

export OMP_PROC_BIND=TRUE

If one does not set these variables and values all threads in a node might run in a same core. Learn more
about Intel thread a�nity interface. Support information for GNU compilers for tread a�nity can be found
here.

4.5 Debugging Parallel Applications

4.5.1 TotalView debugger

TotalView is a debugger with graphical user interface (GUI) for debugging parallel applications. With
TotalView you can:

• run an application under TotalView control
• attach to a running application
• examine a core file

4.5.2 Debugging an Application

Set up debugger environment

module load totalview

Compile the application to be debugged, for example Fortran, c or C++ program. The compiler option -g is
generating the debug information.

mpif90 -g -o myprog mycode.f90
mpicc -g -o myprog mycode.c
mpiCC -g -o myprog mycode.C

Enter a launching command to start TotalView on the application you want to debug. For example 8 core
half an hour session in parallel partition

salloc -n 8 -t 00:30:00 -p parallel totalview srun -a ./my_parallel_prog

Totalview Startup Parameters window may appear. Just clik Ok button (in a basic case). TotalView Root
and Process window appear. Click the GO button in the Totalview process window. A pop-up window
appears, asking if you want to stop the job

42

Process srun is a parallel job.
Do you want to stop the job now

Select Yes in this pop-up window.

4.5.3 Very basic features of Totalview

The Process Window contains the code for the process or thread that you’re debugging. This window is
divided into panes of information. The Stack Trace Pane shows the call stack of routines. The Stack Frame
Pane displays all of a routine’s parameters, its local variables, and the registers for the selected stack frame.

The left margin of the Source Pane displays line numbers. An ARROW over the line number shows the
current location of the program counter (PC) in the selected stack frame. One can place a breakpoint (left
mouse click) at any line whose line number is contained within a box. After setting one or many breakpoints
Go button executes your code to the next breakpoint. When one is placing a breakpoint on a line, TotalView
places an icon over the line number. To remove a breakpoint just click the breakpoint icon one more time.

To examine or change a value of a variable right click the variable and select Dive from the pop up menu. To
see the values of that variable on all processes select Across Processes from the pop up menu. A new window
will show the values and other information from that variable. On that window one can edit the variable
values.

Stepping commands Go, Next, Step, Out and Run to (on the top of Process window) are controlling the way
one is executing the code. Go means go to the next breakpoint, if a breakpoint locates inside a loop the next
breakpoint is the same until loop ends. Next executes the current line and the program counter (arrow) goes
to next line. Step executes one line in your program and if the source line or instruction contains a subroutine
or function call, TotalView steps into it. Out executes all statements within subroutine or function and exits.
Run To executes all lines until the program counter reaches the selected line. A line is selected by clicking a
code line (not the line number) and the background of that line turn grey.

4.5.4 Debugging running application

It is also possible to “attach” TotalView to an application which is already running. The job can be interactive
or a batch job.

First find out the nodes where your application is running. That can be done if the identication number of
the job is known. The command squeue displays information about your SLURM jobs.

squeue -u $USER

With job-id-number option squeue displays information about a chosen job.

squeue -j <job id> -l

The variable “NODELIST” will contain the nodes where the job is running, for example if NODELIST=n[92-
93], the nodes are n92 and n93.

Start TotalView (remember to run setup command module load totalview before launching TotalView).

totalview

From the New Program Window (see image, red boundary line) select "Attach to process“, then from the
”On host" line select "Add host" (green boundary line) and enter the first node name from from the list

43

“NODELIST”. The processes from the selected node will appear. Select (double-click) the upper srun process
(blue boundary line). From the Root Window select (double click) rank 0 process (red boundary line). From
the Stack Trace Pane (green boundary line) of the Process Window one can select a source code of a routine.
You are ready to see/search for the location of the program counter (arrow) and to set breakpoints.

4.5.5 Documents

Latest documents: Totalview documentation | Roque Wave

On a Totalview user interface click Help -> Documentation.

4.6 Processor architecture specific compiling

After the hardware extension in January 2015, Taito has two types of compute nodes:

• Intel Sandybridge: 2 Cpus per node, all together 16 cores (original Taito, has been removed)
• Intel Haswell: 2 Cpus per node, all together 24 cores (extension part)

Haswell procesors have some new instructions such as AVX2 and FMA, that are not available in the Sandy
Bridge processors. This means that it is possible to compile a binary in such a way that it won’t run on
Sandybridge nodes but might run very well on Haswell nodes. To get best performance on new and old nodes
a code may need two binaries, one for Sandybrigde and another for Haswell. The binaries that are optimized
just for one architecture are below called single code path binaries. But of course Sandybridge optimized
code can be run on Haswell nodes too.

Gnu compilers (gcc, g++, gfortran) versions 4.9 and later and Intel compilers (icc, icpc , ifort) versions
14 and later support Haswell specific compiling. Compilers may support multiple code paths. That means
that a binary can have a baseline path and one or more additional optimized paths i.e. compiler creates both
Sandybrigde and Haswell paths. Below are some examples for single and multiple tuned code path options
for Intel and GNU compilers.

Please note, that you should use usual optimization switches like -O2, -O3, or -funroll-all-loops too, even
though these options are not used in the examples described below.

4.6.1 Intel compiler environment

Recent intel compilers of Taito , for example intel/15.0.0, support single and multiple code paths. Baseline
code path is determined by the architecture specified option -x. Multiple, feature specific code paths are are
created with option -ax. These options are available with icc, icpc and ifort compilers and also with MPI
wrappers (mpicc,mpiCC, mpif90) when intel environment (later than 14) is loaded. Compiler will generate a
single code path that support AVX2 and FMA instructions if the options -xCORE-AVX2 and/or -fma

are chosen. An example, this binary will run only on Haswell nodes.

icc -xCORE-AVX2 -fma -o example example.c

Multiple code path example below has a baseline path switch -xAVX (for Sandybridge) and two other
feature specific paths -axCORE-AVX2,CORE-AVX-I (for Haswell and IvyBridge) Option -ax tells the
compiler to generate one or more versions of functions that will utilize features that these instructions have.
This binary will run on Sandybridge (baseline code path) and Haswell nodes (feature specific code path).

icc -xAVX -axCORE-AVX2,CORE-AVX-I -o example example.c

44

4.6.2 GNU compiler environment

GNU compilers, for example gcc/4.9.1, do not support multiple code paths but compiler can tune the
generated code for specified cpu-type. Option -march will choose the generated instructions (for example
Sandybridge instructions) but with switch -mtune compiler can schedule things so that it runs faster on
Haswell cpu. These options are available gcc, g++ and gfortran compilers and and also with MPI wrappers
(mpicc, mpiCC, mpif90) when GNU environment (later than 4.9) is loaded.

Single code path example that will run only on Haswell nodes.

gcc -march=haswell -o example example.c

Tuned code path example that will run both on Sandybridge and Haswell nodes.

gcc -march=sandybridge -mtune=haswell -o example example.c

As always if good performance binary is the target it is worthwhile to try how above mentioned switches
might work with your code.

4.6.3 Login nodes

Login nodes have Sandybridge architecture. Remember this if you apply compiler options like -xHost (Intel
compiler) or -march=native (GNU Compiler). If compilation is done on a login node the binary will have
Sandybridge single code path and if compilation is done on a Haswell node the binary will have a Haswell
single code path.

4.7 Profiling Applications with Intel Tools

4.7.1 Serial and Multithreaded Applications

Intel VTune Amplifier is a powerful profiling tool that can be used to collect performance data of your
application. It is best suited to be used with serial and multithreaded code.

Using Intel VTune Amplifier

Set up the environment for profiling by loading the VTune module as follows:

module load intel-vtune/16.1

If you want to get source code level information, compile your code with optimizations enabled and add also
the debugging information option -g. Basic hotspot analysis is the first analysis type you should try. Here is
a sample batch job script that can be used to profile a serial and OpenMP applications:

#!/bin/bash
#SBATCH -ptest
#SBATCH -Chsw
#SBATCH -t5
#SBATCH -n1
#SBATCH -c4

module load intel-vtune/16.1

srun amplxe-cl -r results_dir_name -collect hotspots -- ./my_application

45

Analyzing Results Using GUI

Results can be viewed using the amplxe-gui application. Unfortunately it does not work well with ssh
and X11 forwarding, so we recommend using the analysis tool in NoMachine environment (see NoMachine
user’s guide). The GUI is available in Taito when the module intel-vtune/16.1 is loaded. You can inspect
the results of a profile run by giving the name of the results directory as an argument to the amplxe-gui,
for example, the results of previous example can be viewed with command amplxe-gui results_dir_name.
Please see Intel’s documentation for more information on using the GUI: https://software.intel.com/en-
us/amplifier_2015_help_lin

4.7.2 MPI Applications

Intel MPI library provides a simple and light-weight profiling for applications. The collected results include
the number of di�erent communication calls, amount of transferred data, etc. The statistics collection can be
enabled using an environment variable I_MPI_STATS, for example:

export I_MPI_STATS=1

Di�erent integer values control the output level, for example value 1 gives results for amount of transferred
data, value 2 adds to the results also the number of di�erent communication calls and so on. When the
statistics collection is turned on, the results for each task are written to an output file stats.txt. For more
details, see the MPI library documentation at Intel’s site: https://software.intel.com/en-us/node/528838

Intel Thread Analyzer and Collector

For more detailed analysis you can use Intel Thread Analyzer and Collector (ITAC), which can be used to
visualize the MPI communication and identify the hotspots and scaling bottle-necks. In order to use the
thread analyze make sure that you have module intel-TraceCollector loaded using command module load
intel-TraceCollector. Also make sure that you are using Intel MPI, that is, you have some version of module
intelmpi loaded. Compile you program code using the mpi wrapper compilers (mpicc, mpiCC and mpif90)
and add options -g -trace to the linking options. For example:

mpicc -g -trace -O3 -xCORE-AVX2 my_program.c

After compilation you can run your program code as you would normally do. Note that the tracing can produce
huge log files, so it is preferable to use as small and short test case as possible. It is also possible to use the
ITAC programming API to collect data only for a portion of the code. See the Intel documentation for more
instructions: https://software.intel.com/en-us/articles/intel-trace-analyzer-and-collector-documentation

Analyzing the Trace Results

After the collecting is done, a series of log files with .stf. su�x will be created in the working directory. They
can be viewed and analyzed using the Trace Analyzed GUI called traceanalyzer, which is available on the
Taito login nodes when itac module is loaded. You can pass the name of the trace file as an argument, for
example traceanalyzer my_program.stf, or open the results file using the GUI. You should also consider
using NoMachine (see the VTune instructions for more information). Please see the documentation at Intel’s
site for detailed usage instructions of Trace Analyzer: https://software.intel.com/en-us/articles/intel-trace-
analyzer-and-collector-documentation

46

5. User’s own software installations

The users of CSC servers are free to install their own application software to Taito. The software to be
installed may be developed locally or downloaded from the internet. The main limitation for the software
installation is that the user must be able to do the installation without using root user account or sudo
command. Further, the software must be installed to users own private disk areas instead of the common
application directories like /appl/bin or /usr/bin. If root access is needed, e.g. in the case of repository
installations, you an consider using the Pouta could computing service in stead of Taito.

In Taito, user application directory $USERAPPL is a directory that is intended for installing users own
software tools. Taito and Sisu severs have separate $USERAPPL directories. Like the work directory, this
directory is visible to the computing nodes of the server too so software installed there can be used in
batch jobs. Unlike the work directory $USERAPPL is permanent and backuped directory. Thus you do not
need worry about preserving you software installation. It will stay available for you, until you remove the
executables.

Below are three examples of using the $USERAPPL directory.

Example 1. Installing your own version of MCL program

Example 2. Installing and using your own Perl module in Taito

Example 3. Installing and using your own Python module in Taito

6. Using Taito-GPU

This part of the guide gives a short introduction to compiling, running, profiling and debugging applications
that can utilize NVIDIA Tesla K80 and P100 GPUs installed on Taito.

GPGPU stands for General-Purpose computation on Graphics Processing Units. GPUs can be used to
accelerate computationally intensive code. This is done together with CPUs by o�oading some compute-
intensive parts of the application to the GPUs. GPGPU implementation is well suited for data parallel and
throughput intensive parts of the application. Data parallelism in this case means that GPU can execute the
selected operation on di�erent data elements simultaneously. GPUs have thousands of cores for this task
(NVIDIA Tesla P100 has 3584 cuda cores). Also it is necessary to have lots of data otherwise the job is not a
throughput intensive.

6.1 Taito-GPU hardware and operating system

The Taito cluster includes a separate partition of compute nodes with dedicated GPU accelerator cards.
Currently in the system there are 26 nodes containing 4 Pascal P100 GPUs each and 12 nodes with 2 dual
GPU K80 GPUs each.

The P100 nodes consists of 26 Dell PowerEdge C4130 servers with:

• 2x Xeon E5-2680 v4 CPUs with 14 cores each running at 2.4GHz
• 512 GB of DDR4 memory
• 4x P100 GPUs connected in pairs to each CPU
• 2x800GB of Sata SSD scratch space

47

The K80 nodes consists of 12 Dell PowerEdge C4130 servers with:

• 2x Xeon E5-2680 v3 CPUs with 12 cores each running at 2.5GHz
• 256 GB of DDR4 memory
• 2x K80 GPU cards each with 2 GPUs for a total of 4 GPUs per node, these are all connected to the

first CPU
• 850GB of HDD scratch space

The di�erent kinds of nodes are connected to each other using FDR InfiniBand which is then connected to
the Taito fabric allowing the use of the same storage environment. Note that the P100 nodes can be moved
between Taito and the Pouta cloud environment meaning not all 26nodes will be present all the time in Taito.
The nodes share the same operating system and o�er a similar modules environment as the Taito cluster,
with the some of the modules in Taito-GPU being built and optimized for GPU usage.

6.2 Getting access to Taito-GPU

In order to access Taito-GPU you need to login to taito-gpu.csc.fi system first. Only that system currently
provides you access to the appropriate module environments (e.g. CUDA-environment and CUDA-aware
MPI libraries, and PGI-compiler for OpenACC) to build & launch your GPU application. Please see further
sections for how to select the correct modules, how to compile your application and how to run it.

6.3 Module and storage environment on Taito-GPU

Taito-GPU shares the same module and storage environment as the rest of the Taito cluster system. The
actual module tree is, however, optimized for GPU usage and thus di�erent. Regarding file system directories,
see more from Chapter 1.5 of Taito User Guide.

Please pay attention to your module environment. Due to dynamic linking nature of application program it
is recommended that you always have exactly the same environment when running your application as when
you used to compile & link it.

For cuda programs use the cuda-env module, this module will load cuda, a compatible version of the GCC
compiler and a compatible MPI implementation. An example of how to load the cuda-env module:

module purge
module load cuda-env

If you opt for directive based OpenACC approach, use the openacc-env module to load a working enviroment:

module purge
module load openacc-env

In case of multi-GPU MPI application it is advisable to enable also CUDA-aware message passing. This
allows the MPI implementation to directly process device pointers with no need by the user to transfer
them from device to host before the transfer. A version of OpenMPI that is built with GPU support is
automatically loaded with the cuda-env and openacc-env modules.

6.4 Compiling & linking GPU-programs

6.4.1 Introduction

In order to make application runnable on GPUs one has to use CUDA programming language, the OpenCL
programming language or the OpenACC directive based approach.

48

For more information on these approaches look at:

CUDA

https://github.com/csc-training/CUDA/blob/master/course-material/intro-to-cuda-csc.pdf

https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/

OpenACC

https://devblogs.nvidia.com/parallelforall/getting-started-openacc/

6.4.2 CUDA

The CUDA compiler is called using the

nvcc

command. The CUDA compiler will take care of the device code compilation and pass the rest on to the
C/C++/Fortran compiler loaded which can be changed by loading di�erent versions of the gcc module.

When compiling CUDA code one should pass the compiler what compute capability the target device supports.
In the Taito cluster currently there are three types of di�erent GPUs that all support di�erent compute
capabilities. The K80 GPUs support compute capability 3.7 and the newest P100 GPUs support compute
capability 6.0. To tell the compiler what compute capability to target for compute capability 3.7 (K80) use:

-gencode arch=compute_37,code=sm_37

and for compute capability 6.0 (P100) use:

-gencode arch=compute_60,code=sm_60

The gencode argument can be repeated multiple times so to compile for all architectures present in the system
use:

-gencode arch=compute_37,code=sm_37 -gencode arch=compute_60,code=sm_60

6.4.3 CUDA and MPI

Building CUDA programs with MPI can be done in two ways, one can either point the nvcc compiler to use
the mpic++ compiler wrappers instead of gcc directly as a backend compiler or manually include and link
MPI using the nvcc compiler.

To change what backend compiler nvcc uses pass the -ccbin flag to nvcc:

nvcc -ccbin=mpic++ cuda-mpi.cu

Alternatively one can do the linking normally done by the mpic++ wrapper by hand and not need to change
the backend compiler:

nvcc -I$MPI_ROOT/include -L$MPI_ROOT/lib -lmpi cuda-mpi.cu

Please note that the actual include paths and libraries depend on the MPI library.

49

6.4.4 OpenACC

6.4.4.1 C/C++ OpenACC

To compile and link the application, the PGI environment must be used. Unless you have strict requirement
for using C++ compiler (pgc++), it is often more convenient to deploy PGI’s C-compiler with c99 standard
extensions:

module purge

module load pgi/16.1 cuda/7.5
module list

pgcc -c99 -O3 -Minfo=all -acc -ta=tesla:cc35,7.5,kepler+ daxpy.c -o daxpy.x.acc

Here we only target compute capability 3.5, since PGI does not have special support for 3.7. The code will
still also work on K80 cards. Since we asked for compiler info via -Minfo=all , we will be rewarded by a
rather exhaustive listing of messages.

6.4.4.2 Fortran OpenACC

Compilation goes as follows:

module purge
module load pgi/16.1 cuda/7.5
module list

pgfortran -O3 -Minfo=all -acc -ta=tesla:cc35,7.5,kepler+ daxpy.F90 -o daxpy.x.acc

6.5 Running GPU-programs

6.5.1 Introduction

It is always recommended to use SLURM batch job file for running GPU specific jobs. However, for quick tests
also srun command would be acceptable. When running GPU applications the batch queue (or partition)
in concern need to be either "gpu“, ”gputest“, ”gpulong" Which partition used is set using

-p queue_name

What type of GPU used is set using a generic resource (GRES) flag:

--gres=gpu:type:n

Where type is the type of GPU requested per compute node, currently valid values are k80 or p100 and n is
the number of GPUs to reserve per node. On the K80 and P100 nodes one can reserve up to 4 GPUs. The
gpu and gpulong partition is intended for production runs while gputest is intended for short (less than 15
min) test and development runs.

To request 2 K80 GPUs use --gres=gpu:k80:2 or to request 4 P100 GPUs use --gres=gpu:p100:4

6.5.2 Running under GNU environment on one GPU

Here is a valid script for running under GNU environment that will default any GPU available:

50

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:k80:1
#SBATCH

module purge
module load gcc cuda
module list

srun ./your_binary

6.5.3 Running under PGI environment on one GPU

The batch job script is very similar as in the GPU environment, the only di�erence is that di�erent module
needs to be loaded. And executable name is also di�erent.

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:k80:1
#SBATCH

module purge
module load pgi cuda/7.5
module list

srun ./your_binary

6.5.4 Running under GNU environment on multiple GPUs

Here is a valid script for running under GNU environment, on 2 GPUs on a K80 node:

51

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:k80:2
#SBATCH

module purge
module load gcc cuda
module list

srun ./your_binary

Here is a valid script for running under GNU environment, on 4 GPUs on K80 a node:

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:k80:4
#SBATCH

module purge
module load gcc cuda
module list

srun ./your_binary

6.5.5 Using the SSD scratch space

Each P100 node is equipped with 800GB of fast SSD storage (Sata SSDs) intended as a scratch space. While
the K80 nodes have 850 GB of space consisting of a regular hard drive. This space is placed under the
${TMPDIR} directory and in that directory there will be a folder with the name of the slurm job id, accessible
from the ${SLURM_JOB_ID} enviroment variable. It is this folder that should be used as a scratch space so
to access it easily use ${TMPDIR}/${SLURM_JOB_ID}. The space is local to each compute node meaning
that it is shared among all the users of that node and in multi node jobs each node only has access to its own
local scratch space and this cannot be accessed from other compute nodes.
To use this space the user needs to move data there in the beginning of the job script and any
data the user wants to retain needs to be transferred from the scratch space before the job
finishes, once the job ends the files on the SSD space are removed.

If you are moving a lot of smaller files to the scratch space it the recommended work flow is:

• You first make a tar file out of them, outside of any batch job, place this tar file in the ${WRKDIR}
directory.

• Then as part if your batch job you copy the tar file to the scratch space.

52

• And finally still as part if your batch job you extract that tar file still to the scratch sapce.

For single node jobs data can be transferred to the ${TMPDIR} location with normal file copy commands.
These commands need to be run in the job script as you do not have access to the ${TMPDIR} directory
from outside the job. Below is an example for a single node script.

#!/bin/bash
#SBATCH -N 1
#SBATCH -n 1
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:p100:1
#SBATCH

module purge
module load cuda-env/10
module list

cp ${WRKDIR}/your_file.csv ${TMPDIR}/${SLURM_JOB_ID}/your_file.csv
srun ./your_binary

For jobs using multiple compute nodes the copy command needs to be run on all nodes participating in the
job, so we need to use srun to run the commands.

#!/bin/bash
#SBATCH -N 2
#SBATCH -n 2
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:p100:1
#SBATCH

module purge
module load cuda-env/10
module list

srun -N ${SLURM_JOB_NUM_NODES}-${SLURM_JOB_NUM_NODES} -n ${SLURM_JOB_NUM_NODES} cp ${WRKDIR}/your_file.csv ${TMPDIR}/${SLURM_JOB_ID}/your_file.csv

srun ./your_binary

6.6 Deploying GPU + MPI-programs

It is possible to utilize multiple GPUs to the benefit of better application performance. Normally this is done
by creating an MPI-program and making sure each MPI-task is connected to a GPU.

53

When we have Hyper-Q/MPS activated on Taito-GPU system, each GPU can be shared between multiple
MPI-tasks of the same host CPU.

The MPI message passing is usually done by sending and receiving messages between host CPUs. However,
with the advent of new CUDA-aware MPI libraries (like OpenMPI & MVAPICH2) it is possible to exchange
messages between GPU resident data, so being able to pass the MPI implementation a pointer to memory
resident on the GPU.

This may be beneficial, since not only your code becomes more readable (e.g. OpenACC versions), but also
you avoid all the hassle in updating back & forth the data on host CPU just for the sake of making the
message passing to work.

When using multiple nodes one needs to be extra verbose in the batch script to ensure the correct placement
of the tasks. The easiest way to ensure correct placement is to use the --ntasks-per-node flag to specify
how many task each node should be running. The --gres flag should be set to how many GPUs per node
the job will use.

For example to run 4 tasks on 2 nodes and use 2 GPUs per node the following batch script should be used:

#!/bin/bash
#SBATCH -N 2
#SBATCH -n 4
#SBATCH -p gpu
#SBATCH -t 00:05:00
#SBATCH -J gpu_job
#SBATCH -o gpu_job.out.%j
#SBATCH -e gpu_job.err.%j
#SBATCH --gres=gpu:k80:2
#SBATCH --ntasks-per-node= 2
#SBATCH

module purge
module load gcc cuda
module list

srun ./your_binary

6.7 Profiling GPU-programs

6.7.1 Introduction

In order to monitor performance of your GPU application, the best bet is to use NVIDIA’s “nvprof” command
line tool.
It shows you how much time is spent in CUDA-kernels and data transfers between host CPU and GPU. It
does not show performance of the host part of your application.

6.7.2 Using nvprof

The nvprof is unbelievably easy to use. You don’t have to recompile nor relink your application. Only put
“nvprof” in front of your application invokation and you are done. Profiling output will be written in a human
readable form immediately after completion of your application.

54

The CUDA-only application gives the following output :

srun -N1 -pgpu --gres=gpu:k40:1 nvprof daxpy.x.gnu
==117693== NVPROF is profiling process 117693, command: daxpy.x.gnu
n=134217728 : vlen=256 : griddim = 524288 1 1 : blockdim.x = 256 1 1
daxpy(n=134217728): sum=9.0072e+15 : check_sum=9.0072e+15 : diff=0
==117693== Profiling application: daxpy.x.gnu
==117693== Profiling result:
Time(%) Time Calls Avg Min Max Name
78.52% 1.35003s 2 675.01ms 668.75ms 681.27ms [CUDA memcpy HtoD]
20.49% 352.28ms 1 352.28ms 352.28ms 352.28ms [CUDA memcpy DtoH]
0.99% 16.967ms 1 16.967ms 16.967ms 16.967ms daxpy(int, double, double const *, double*)

==117693== API calls:
Time(%) Time Calls Avg Min Max Name
87.15% 1.72141s 3 573.80ms 369.60ms 682.45ms cudaMemcpy
12.73% 251.40ms 2 125.70ms 1.2711ms 250.12ms cudaMalloc
0.09% 1.8257ms 2 912.83us 839.03us 986.63us cudaFree
0.02% 311.92us 83 3.7580us 269ns 126.07us cuDeviceGetAttribute
0.00% 68.179us 1 68.179us 68.179us 68.179us cudaLaunch
0.00% 47.282us 1 47.282us 47.282us 47.282us cuDeviceTotalMem
0.00% 39.486us 1 39.486us 39.486us 39.486us cuDeviceGetName
0.00% 13.732us 4 3.4330us 237ns 11.644us cudaSetupArgument
0.00% 3.2010us 1 3.2010us 3.2010us 3.2010us cudaConfigureCall
0.00% 2.8320us 2 1.4160us 505ns 2.3270us cuDeviceGetCount
0.00% 1.1070us 2 553ns 505ns 602ns cuDeviceGet

Whereas running OpenACC C-version of DAXPY against “nvprof” gives :

55

% srun -N1 -pgpu --gres=gpu:k40:1 nvprof daxpy.x.acc
==115197== NVPROF is profiling process 115197, command: daxpy.x.acc
daxpy(n=134217728): sum=9.0072e+15 : check_sum=9.0072e+15 : diff=0
==115197== Profiling application: daxpy.x.acc
==115197== Profiling result:
Time(%) Time Calls Avg Min Max Name
50.68% 18.245ms 1 18.245ms 18.245ms 18.245ms daxpy_27_gpu
31.15% 11.213ms 1 11.213ms 11.213ms 11.213ms init_13_gpu
17.81% 6.4099ms 1 6.4099ms 6.4099ms 6.4099ms sum_up_35_gpu
0.35% 127.00us 1 127.00us 127.00us 127.00us sum_up_36_gpu_red
0.01% 3.0080us 1 3.0080us 3.0080us 3.0080us [CUDA memcpy DtoH]
0.00% 1.5990us 1 1.5990us 1.5990us 1.5990us [CUDA memcpy HtoD]

==115197== API calls:
Time(%) Time Calls Avg Min Max Name
86.57% 272.72ms 1 272.72ms 272.72ms 272.72ms cuCtxCreate
11.44% 36.034ms 8 4.5042ms 1.7240us 18.252ms cuStreamSynchronize
1.35% 4.2681ms 5 853.63us 147.42us 2.0846ms cuMemAlloc
0.36% 1.1258ms 1 1.1258ms 1.1258ms 1.1258ms cuMemAllocHost
0.18% 571.83us 1 571.83us 571.83us 571.83us cuModuleLoadData
0.06% 193.58us 4 48.394us 20.160us 125.87us cuLaunchKernel
0.02% 52.670us 1 52.670us 52.670us 52.670us cuStreamCreate
0.01% 29.421us 1 29.421us 29.421us 29.421us cuMemcpyDtoHAsync
0.01% 19.862us 1 19.862us 19.862us 19.862us cuMemcpyHtoDAsync
0.00% 13.031us 14 930ns 373ns 2.5170us cuPointerGetAttribute
0.00% 2.7230us 4 680ns 330ns 1.6490us cuModuleGetFunction
0.00% 2.6310us 2 1.3150us 431ns 2.2000us cuDeviceGetCount
0.00% 2.0510us 1 2.0510us 2.0510us 2.0510us cuCtxAttach
0.00% 1.8740us 1 1.8740us 1.8740us 1.8740us cuCtxSetCurrent
0.00% 1.1190us 2 559ns 555ns 564ns cuDeviceGet
0.00% 1.0990us 2 549ns 297ns 802ns cuCtxGetCurrent
0.00% 815ns 1 815ns 815ns 815ns cuDeviceComputeCapability

7. Using Taito-shell for running interactive jobs in Taito

7.1 What is Taito-shell

The Taito-shell environment is intended for interactive use of scientific applications maintained by
CSC, serial jobs and usage of graphical application interfaces. The Taito-shell computing environment
is part of the Taito cluster.

Taito-shell emulates normal application server like behavior. For the user, it appears very much like a normal
Linux server: you can log in and run applications interactively with Linux commands. Taito-shell uses the
same the disk environment, software stackand module system as the normal Taito cluster. The di�erence
to the Taito login nodes is, that Taito-shell does not have the 1 hour time limit for jobs, that are executed
interactively. Instead, a job started in Taito-shell can run as long as the Taito-shell session remains open.

From the technical point of view, Taito-shell is an oversubscribed interactive batch queue on the Taito super
cluster. When you log in to taito-shell.csc.fi, you are automatically connected to an interactive batch job
running in this unlimited partition.

Using this kind of approach has the following advantages over a traditional application server:

56

• Taito-shell uses the same resources as Taito, like home directory, $WRKDIR directory and installed
software. You can easily switch between interactive working and batch jobs based working.

• Better scalability: In case of high demand, more Taito nodes can be assigned to Taito-shell and vice
versa.

• Improved load balancing: The number of users per Taito-shell node can be better controlled.

Taito-shell is, however, not a separate Linux server and it has two important exceptions compared to
traditional Linux application servers:

• No direct node access. “ssh taito-shell.csc.fi” logs in to the next free Taito-shell node on Taito. You
cannot determine on which node you will end up. We are aware that specific node access is sometimes
necessary, please see the FAQ section below on how to achieve this.

• screen/nohup does not work in Taito-shell. Logging out of Taito-shell kills all processes of the user
in question, also background jobs. For long running jobs you can use Taito’s batch job system, or, for
smaller scale jobs, consult the FAQ.

The features of Taito-Shell environment in a nutshell:

• Direct login with the address: taito-shell.csc.fi
• O�ers no-queuing interactive use of software installed on Taito
• Uses the same file system and network shares as Taito.
• Enables seamless switching between quick interactive use and batch jobs.
• Computing capacity up to 4 cores per user
• Shared memory of up to 128 GB per user

Jobs that utilize more than 4 cores or that require more than 128 GB memory usage should be executed as
batch jobs in Taito or in Sisu.

7.2 Using Taito-shell

7.2.1 Obtaining a user id

If you have a user account for Taito, you can use it to login to Taito-shell too.

If you are a new customer for CSC’s computing and application software services, see first instructions
for new customers below. The application procedure depends on whether your are an academic user or not.

https://research.csc.fi/csc-guide-getting-access-to-csc-services

7.2.2 Logging in

There are two ways to login:shell login (ssh, Putty etc.) and NoMachine for graphical logins.

7.2.2.1 Logging in via ssh

To log in, normally one has to first access a local workstation (at university or some other site on the Internet)
and then use an SSH program to connect to Taito-shell (taito-shell.csc.fi) with your CSC user_id:

ssh -X csc_user_id@taito-shell.csc.fi

After you have provided your password, you will see a prompt similar to the one below, the number might be
di�erent:

[user_id@c305 ~]

57

Taito-shell is now ready to execute your commands. For more information on connecting to CSC’s servers via
SSH please consult the general guide on how to use SSH at CSC.

7.2.2.2. Logging in via NoMachine

Graphical logins to Taito-shell are possible via NoMachine. You need to download and install a NoMachine
client and configure it to use the server nxkajaani.csc.fi. Please consult the NoMachine documentation on
how to get graphical access. To start Taito-Shell in NoMachine, right click with the mouse in the Desktop
area, choose Taito-shell from the pull-down menu, add your password, and you are logged in. You can now
type in the commands to launch the software you want to use, eg. for Rstudio commands would be

module load r-env
module load rstudio
rstudio

7.2.3 Submitting batch jobs from Taito-shell

Taito-shell.csc.fi environment is configured for running commands interactively. You can submit batch jobs
from Taito-shell to taito.csc.fi cluster. However to do that, you need to add definition -M csc either top the
batch job commands or to the #SBATCH lines of the batch job files.

For example to submit a batch job command you should use command:

sbatch -M csc batch_job_file.sh

In the same way, the status of the jobs , running in Taito cluster, can be checked with command

squeue -M csc -l

(Running squeue command without -M csc would list the current taito-shell.csc.fi sessions)

7.3 Taito-shell FAQ

7. Using Taito-shell for running interactive jobs in Taito

7.1 What is Taito-shell

The Taito-shell environment is intended for interactive use of scientific applications maintained by
CSC, serial jobs and usage of graphical application interfaces. The Taito-shell computing environment
is part of the Taito cluster.

Taito-shell emulates normal application server like behavior. For the user, it appears very much like a normal
Linux server: you can log in and run applications interactively with Linux commands. Taito-shell uses the
same the disk environment, software stackand module system as the normal Taito cluster. The di�erence
to the Taito login nodes is, that Taito-shell does not have the 1 hour time limit for jobs, that are executed
interactively. Instead, a job started in Taito-shell can run as long as the Taito-shell session remains open.

58

From the technical point of view, Taito-shell is an oversubscribed interactive batch queue on the Taito super
cluster. When you log in to taito-shell.csc.fi, you are automatically connected to an interactive batch job
running in this unlimited partition.

Using this kind of approach has the following advantages over a traditional application server:

• Taito-shell uses the same resources as Taito, like home directory, $WRKDIR directory and installed
software. You can easily switch between interactive working and batch jobs based working.

• Better scalability: In case of high demand, more Taito nodes can be assigned to Taito-shell and vice
versa.

• Improved load balancing: The number of users per Taito-shell node can be better controlled.

Taito-shell is, however, not a separate Linux server and it has two important exceptions compared to
traditional Linux application servers:

• No direct node access. “ssh taito-shell.csc.fi” logs in to the next free Taito-shell node on Taito. You
cannot determine on which node you will end up. We are aware that specific node access is sometimes
necessary, please see the FAQ section below on how to achieve this.

• screen/nohup does not work in Taito-shell. Logging out of Taito-shell kills all processes of the user
in question, also background jobs. For long running jobs you can use Taito’s batch job system, or, for
smaller scale jobs, consult the FAQ.

The features of Taito-Shell environment in a nutshell:

• Direct login with the address: taito-shell.csc.fi
• O�ers no-queuing interactive use of software installed on Taito
• Uses the same file system and network shares as Taito.
• Enables seamless switching between quick interactive use and batch jobs.
• Computing capacity up to 4 cores per user
• Shared memory of up to 128 GB per user

Jobs that utilize more than 4 cores or that require more than 128 GB memory usage should be executed as
batch jobs in Taito or in Sisu.

7.2 Using Taito-shell

7.2.1 Obtaining a user id

If you have a user account for Taito, you can use it to login to Taito-shell too.

If you are a new customer for CSC’s computing and application software services, see first instructions
for new customers below. The application procedure depends on whether your are an academic user or not.

https://research.csc.fi/csc-guide-getting-access-to-csc-services

7.2.2 Logging in

There are two ways to login:shell login (ssh, Putty etc.) and NoMachine for graphical logins.

7.2.2.1 Logging in via ssh

To log in, normally one has to first access a local workstation (at university or some other site on the Internet)
and then use an SSH program to connect to Taito-shell (taito-shell.csc.fi) with your CSC user_id:

ssh -X csc_user_id@taito-shell.csc.fi

59

After you have provided your password, you will see a prompt similar to the one below, the number might be
di�erent:

[user_id@c305 ~]

Taito-shell is now ready to execute your commands. For more information on connecting to CSC’s servers via
SSH please consult the general guide on how to use SSH at CSC.

7.2.2.2. Logging in via NoMachine

Graphical logins to Taito-shell are possible via NoMachine. You need to download and install a NoMachine
client and configure it to use the server nxkajaani.csc.fi. Please consult the NoMachine documentation on
how to get graphical access. To start Taito-Shell in NoMachine, right click with the mouse in the Desktop
area, choose Taito-shell from the pull-down menu, add your password, and you are logged in. You can now
type in the commands to launch the software you want to use, eg. for Rstudio commands would be

module load r-env
module load rstudio
rstudio

7.2.3 Submitting batch jobs from Taito-shell

Taito-shell.csc.fi environment is configured for running commands interactively. You can submit batch jobs
from Taito-shell to taito.csc.fi cluster. However to do that, you need to add definition -M csc either top the
batch job commands or to the #SBATCH lines of the batch job files.

For example to submit a batch job command you should use command:

sbatch -M csc batch_job_file.sh

In the same way, the status of the jobs , running in Taito cluster, can be checked with command

squeue -M csc -l

(Running squeue command without -M csc would list the current taito-shell.csc.fi sessions)

7.3 Taito-shell FAQ

7. Using Taito-shell for running interactive jobs in Taito

7.1 What is Taito-shell

The Taito-shell environment is intended for interactive use of scientific applications maintained by
CSC, serial jobs and usage of graphical application interfaces. The Taito-shell computing environment
is part of the Taito cluster.

Taito-shell emulates normal application server like behavior. For the user, it appears very much like a normal
Linux server: you can log in and run applications interactively with Linux commands. Taito-shell uses the
same the disk environment, software stackand module system as the normal Taito cluster. The di�erence

60

to the Taito login nodes is, that Taito-shell does not have the 1 hour time limit for jobs, that are executed
interactively. Instead, a job started in Taito-shell can run as long as the Taito-shell session remains open.

From the technical point of view, Taito-shell is an oversubscribed interactive batch queue on the Taito super
cluster. When you log in to taito-shell.csc.fi, you are automatically connected to an interactive batch job
running in this unlimited partition.

Using this kind of approach has the following advantages over a traditional application server:

• Taito-shell uses the same resources as Taito, like home directory, $WRKDIR directory and installed
software. You can easily switch between interactive working and batch jobs based working.

• Better scalability: In case of high demand, more Taito nodes can be assigned to Taito-shell and vice
versa.

• Improved load balancing: The number of users per Taito-shell node can be better controlled.

Taito-shell is, however, not a separate Linux server and it has two important exceptions compared to
traditional Linux application servers:

• No direct node access. “ssh taito-shell.csc.fi” logs in to the next free Taito-shell node on Taito. You
cannot determine on which node you will end up. We are aware that specific node access is sometimes
necessary, please see the FAQ section below on how to achieve this.

• screen/nohup does not work in Taito-shell. Logging out of Taito-shell kills all processes of the user
in question, also background jobs. For long running jobs you can use Taito’s batch job system, or, for
smaller scale jobs, consult the FAQ.

The features of Taito-Shell environment in a nutshell:

• Direct login with the address: taito-shell.csc.fi
• O�ers no-queuing interactive use of software installed on Taito
• Uses the same file system and network shares as Taito.
• Enables seamless switching between quick interactive use and batch jobs.
• Computing capacity up to 4 cores per user
• Shared memory of up to 128 GB per user

Jobs that utilize more than 4 cores or that require more than 128 GB memory usage should be executed as
batch jobs in Taito or in Sisu.

7.2 Using Taito-shell

7.2.1 Obtaining a user id

If you have a user account for Taito, you can use it to login to Taito-shell too.

If you are a new customer for CSC’s computing and application software services, see first instructions
for new customers below. The application procedure depends on whether your are an academic user or not.

https://research.csc.fi/csc-guide-getting-access-to-csc-services

7.2.2 Logging in

There are two ways to login:shell login (ssh, Putty etc.) and NoMachine for graphical logins.

61

7.2.2.1 Logging in via ssh

To log in, normally one has to first access a local workstation (at university or some other site on the Internet)
and then use an SSH program to connect to Taito-shell (taito-shell.csc.fi) with your CSC user_id:

ssh -X csc_user_id@taito-shell.csc.fi

After you have provided your password, you will see a prompt similar to the one below, the number might be
di�erent:

[user_id@c305 ~]

Taito-shell is now ready to execute your commands. For more information on connecting to CSC’s servers via
SSH please consult the general guide on how to use SSH at CSC.

7.2.2.2. Logging in via NoMachine

Graphical logins to Taito-shell are possible via NoMachine. You need to download and install a NoMachine
client and configure it to use the server nxkajaani.csc.fi. Please consult the NoMachine documentation on
how to get graphical access. To start Taito-Shell in NoMachine, right click with the mouse in the Desktop
area, choose Taito-shell from the pull-down menu, add your password, and you are logged in. You can now
type in the commands to launch the software you want to use, eg. for Rstudio commands would be

module load r-env
module load rstudio
rstudio

7.2.3 Submitting batch jobs from Taito-shell

Taito-shell.csc.fi environment is configured for running commands interactively. You can submit batch jobs
from Taito-shell to taito.csc.fi cluster. However to do that, you need to add definition -M csc either top the
batch job commands or to the #SBATCH lines of the batch job files.

For example to submit a batch job command you should use command:

sbatch -M csc batch_job_file.sh

In the same way, the status of the jobs , running in Taito cluster, can be checked with command

squeue -M csc -l

(Running squeue command without -M csc would list the current taito-shell.csc.fi sessions)

62

7.3 Taito-shell FAQ

7. Using Taito-shell for running interactive jobs in Taito

7.1 What is Taito-shell

The Taito-shell environment is intended for interactive use of scientific applications maintained by
CSC, serial jobs and usage of graphical application interfaces. The Taito-shell computing environment
is part of the Taito cluster.

Taito-shell emulates normal application server like behavior. For the user, it appears very much like a normal
Linux server: you can log in and run applications interactively with Linux commands. Taito-shell uses the
same the disk environment, software stackand module system as the normal Taito cluster. The di�erence
to the Taito login nodes is, that Taito-shell does not have the 1 hour time limit for jobs, that are executed
interactively. Instead, a job started in Taito-shell can run as long as the Taito-shell session remains open.

From the technical point of view, Taito-shell is an oversubscribed interactive batch queue on the Taito super
cluster. When you log in to taito-shell.csc.fi, you are automatically connected to an interactive batch job
running in this unlimited partition.

Using this kind of approach has the following advantages over a traditional application server:

• Taito-shell uses the same resources as Taito, like home directory, $WRKDIR directory and installed
software. You can easily switch between interactive working and batch jobs based working.

• Better scalability: In case of high demand, more Taito nodes can be assigned to Taito-shell and vice
versa.

• Improved load balancing: The number of users per Taito-shell node can be better controlled.

Taito-shell is, however, not a separate Linux server and it has two important exceptions compared to
traditional Linux application servers:

• No direct node access. “ssh taito-shell.csc.fi” logs in to the next free Taito-shell node on Taito. You
cannot determine on which node you will end up. We are aware that specific node access is sometimes
necessary, please see the FAQ section below on how to achieve this.

• screen/nohup does not work in Taito-shell. Logging out of Taito-shell kills all processes of the user
in question, also background jobs. For long running jobs you can use Taito’s batch job system, or, for
smaller scale jobs, consult the FAQ.

The features of Taito-Shell environment in a nutshell:

• Direct login with the address: taito-shell.csc.fi
• O�ers no-queuing interactive use of software installed on Taito
• Uses the same file system and network shares as Taito.
• Enables seamless switching between quick interactive use and batch jobs.
• Computing capacity up to 4 cores per user
• Shared memory of up to 128 GB per user

Jobs that utilize more than 4 cores or that require more than 128 GB memory usage should be executed as
batch jobs in Taito or in Sisu.

63

7.2 Using Taito-shell

7.2.1 Obtaining a user id

If you have a user account for Taito, you can use it to login to Taito-shell too.

If you are a new customer for CSC’s computing and application software services, see first instructions
for new customers below. The application procedure depends on whether your are an academic user or not.

https://research.csc.fi/csc-guide-getting-access-to-csc-services

7.2.2 Logging in

There are two ways to login:shell login (ssh, Putty etc.) and NoMachine for graphical logins.

7.2.2.1 Logging in via ssh

To log in, normally one has to first access a local workstation (at university or some other site on the Internet)
and then use an SSH program to connect to Taito-shell (taito-shell.csc.fi) with your CSC user_id:

ssh -X csc_user_id@taito-shell.csc.fi

After you have provided your password, you will see a prompt similar to the one below, the number might be
di�erent:

[user_id@c305 ~]

Taito-shell is now ready to execute your commands. For more information on connecting to CSC’s servers via
SSH please consult the general guide on how to use SSH at CSC.

7.2.2.2. Logging in via NoMachine

Graphical logins to Taito-shell are possible via NoMachine. You need to download and install a NoMachine
client and configure it to use the server nxkajaani.csc.fi. Please consult the NoMachine documentation on
how to get graphical access. To start Taito-Shell in NoMachine, right click with the mouse in the Desktop
area, choose Taito-shell from the pull-down menu, add your password, and you are logged in. You can now
type in the commands to launch the software you want to use, eg. for Rstudio commands would be

module load r-env
module load rstudio
rstudio

7.2.3 Submitting batch jobs from Taito-shell

Taito-shell.csc.fi environment is configured for running commands interactively. You can submit batch jobs
from Taito-shell to taito.csc.fi cluster. However to do that, you need to add definition -M csc either top the
batch job commands or to the #SBATCH lines of the batch job files.

For example to submit a batch job command you should use command:

sbatch -M csc batch_job_file.sh

64

In the same way, the status of the jobs , running in Taito cluster, can be checked with command

squeue -M csc -l

(Running squeue command without -M csc would list the current taito-shell.csc.fi sessions)

7.3 Taito-shell FAQ

65

