Learning materials - Services for Research
GIS self-study materials
GIS introductions and vocabulary
- Geoinformatiikka luonnonvarojen hallinnassa (Holopainen, Tokola, Vastaranta, Heikkilä, Huitu, Laamanen & Alho, HY, 2015), only in Finnish
- A gentle introduction to GIS (T. Sutton, O. Dassau, M. Sutton 2009)
- Wikipedia: Geographic information system in Wikipedia, Paikkatietojärjestelmä Wikipediassa
- Laserkeilaus metsävarojen hallinnassa (Holopainen, Hyyppä & Vastaranta, HY), only in Finnish.
- Sanastot: geoinformatiikan sanasto, paikannussanasto, kaukokartoitussanasto, only in Finnish.
More learning materials can be found in GeoPortti training materials.
Software specific learning materials can be found from CSC software pages.
Materials of CSC GIS events
Geocomputing in CSC computing environment learning materials
Geocomputing using CSC resources course
Kylli Ek, Samantha Wittke 2021, 2022, 2023
Introduction to geocomputing in Puhti: using R, Python, GDAL.
- Course materials 2023
- Older slides: Slides of Geocomputing workshop for Python in Puhti,2022 (Python), Slides of Geocomputing workshop for R in Puhti,2021 (R)
- Exercise instructions: Exercise instructions of Geocomputing workshop in Puhti,Python, Exercise instructions of Geocomputing workshop in Puhti,R, Exercise instructions of Geocomputing workshop in Puhti,GDAL
- "Using CSC HPC Environment Efficiently" self-learning course, 2023
- CSC quick reference for Puhti
Geocomputing webinars
- Geocomputing in Puhti supercomputer (Johannes Nyman / CSC, 2020): Geocomputing in Puhti supercomputer webinar slides and Geocomputing in Puhti supercomputer webinar webinar recording
- Using CSC's cloud services cPouta and Rahti for GIS (Eduardo Gonzalez /CSC, 2019): cPouta and Rahti for GIS webinar slides and cPouta and Rahti for GIS webinar webinar recording
- Allas and Geospatial data (Johannes Nyman / CSC, 2020): Allas and Geospatial data webinar slides and Allas and Geospatial data webinar webinar recording
Geocomputing seminars
Geocomputing seminars. Short presentations of research projects where CSC geocomputing resources have been used.
Software or application specific courses
Introduction to Python GIS
Kamyar Hasanzadeh / HY, Samantha Wittke / CSC, 3-days course, 2024.
GIS in Python; Spatial Data Model, Geometric Objects, Shapely, working with (Geo)DataFrames, geocoding and spatial queries, geometric operations, reclassifying data, plotting and interactive maps, raster data processing in Python.
- This course is based on Helsinki University Automating GIS-processes course, which has a few more topics and updates.
- Raster lession materials and notebooks
Spatial data analysis with R
Marko Kallio / Aalto university, 3-days course, 2023.
Practical machine learning for spatial data
Mats Sjöberg, Markus Koskela, Samantha Wittke, Kylli Ek, 2-days course, 2022.
STAC - how to find and use spatiotemporal data easily?
Kylli Ek, half-day workshop, 2023
of Lidar data analysis in Taito, with PDAL and R
Web GIS Enabled Spatial Analysis & Data Science with ArcGIS
Aki Kaapro / Esri Finland, 1-day course, 2021
Introduction to the spatial analysis framework within the ArcGIS platform for vector, point cloud, and raster data. Using Esri's ArcGIS Pro desktop app, spatial data science methods are applied for pattern detection and clustering, but also to make spatial data-based predictions and geoAI. How to use modern Web GIS implementation pattern, the new paradigm of how people can share, find, and use geographic information via a geospatial cloud.
- Slides of Web GIS Enabled Spatial Analysis & Data Science with ArcGIS
- Exercise 1: Get Started with ArcGIS Pro
- Exercise 2: Cluster and outlier analysis with ArcGIS pro
- Exercise 3: Creating a LAS Dataset and Raster Derivatives From Point Cloud Data
- Exercise 4: Understanding Precipitation Patterns and Trends using Scientific Multidimensional Data with ArcGIS pro, in the text the data link is wrong, use this NOAA dataset.
PyQGIS: expanding QGIS’s functionality with Python
Tatu Leppämäki / University of Helsinki, 1-day course, 2021
A practical introduction to PyQGIS, the Python implementation in QGIS: running Python code through the built-in console, creating scripts, automating processes with the graphical Model Builder and processing tools, and creating a simple graphical QGIS plugin.
Introduction to using Google Earth Engine
Ulpu Leinonen / UTU, 2-days course, 2019.
Google Earth Engine (GEE) is an online platform which allows its users to find, process, analyze, and download satellite imagery and other Earth observation data using Google's infrastructure. The course topics: data types, code editor, accessing satellite imagery, calculations with data, working with vector data, compositing and mosaicking, image classification, time series.
- Course materials of Google Earth Engine
- Demo code for exercise answers of Google Earth Engine
- GEE user guide
- Tutorials in the GEE user guide
- GEE educational materials
- GEE debugging guide
- GEE Help Forum
- What happens under the hood?
Lidar data analysis in Taito, with PDAL and R
Elias Annila, Eduardo Gonzalez, Kylli Ek / CSC, 1-day course, 2019
The main tools covered in the course are: PDAL and different R packages, inc lidR and rlas. The objective is to get a general overview of tasks that can be done using these tools: filtering points, calculating digital elevation and surface models, calculating canopy height, tree detection, mesh creation, change detection.
Introduction to aerial LiDAR data management
Ville Kankare / HY, 1-day course, 2018.
Basic characteristics of LiDAR datasets and how to manage aerial LiDAR datasets using LasTools and R. Predicting forest attributes using area based approach and calculated metrics with R.
- Course materials of aerial LiDAR data management
- LiDAR analysis in Taito (Eduardo Gonzalez, CSC)